Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142698

RESUMEN

Modified release systems depend on the selection of an appropriate agent capable of controlling the release of the drug, sustaining the therapeutic action over time, and/or releasing the drug at the level of a particular tissue or target organ. Polyethylene glycol 4000 (PEG 4000) is commonly employed in drug release formulations while polymethyl methacrylate (PMMA) is non-toxic and has a good solubility in organic solvents. This study aimed at the incorporation of ketoconazole in PMMA-g-PEG 4000 and its derivatives, thus evaluating its release profile and anti-Candida albicans and cytotoxic activities. Ketoconazole was characterized and incorporated into the copolymers. The ketoconazole incorporated in the copolymer and its derivatives showed an immediate release profile. All copolymers with ketoconazole showed activity against Candida albicans and were non-toxic to human cells in the entire concentration tested.


Asunto(s)
Candida albicans , Cetoconazol , Antifúngicos/farmacología , Humanos , Cetoconazol/farmacología , Polietilenglicoles , Polimetil Metacrilato , Solventes
2.
Environ Technol ; 41(10): 1245-1255, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30257615

RESUMEN

Vegetable oils (VOs) can be used as plasticizers or as biodegrading additives for commercial polymers. According to the literature, the use of concentrations higher than 5% of oils added to polymers or their mixtures indicated loss of mechanical properties on the final product. However, VOs can be used as a compatibilizer for the mixture of synthetic polymers with biopolymers (PM) under concentrations higher than 5%. Moringa oleifera oil (MO) was used as a compatibilizer to PM mixtures using oil concentrations higher than 5%, 10% and 15% in mass. PMs were analysed at first based on mechanical properties which indicated a better concentration at 15% of MO. This article presents a study of MO influence on biodegradation behaviour of PM, which was composed of low-density polyethylene obtained from food bags and biopolymers (PB) obtained in market plastic bags. PM doped with different concentrations of MO was submitted to studies of mechanical, chemical, morphological and thermal properties and their biodegradation behaviour was evaluated. The concentration of 15% of MO increased the thermal resistance of PM, improved the biodegradation behaviour according to controlled and free tests and reduced its stiffness without a loss of important mechanical properties. The results of this work showed that MO influenced positively the biodegradation of the PM mixture by improving 30% of the degrading speed.


Asunto(s)
Moringa oleifera , Biodegradación Ambiental , Alimentos , Aceites de Plantas , Polímeros
3.
Carbohydr Polym ; 201: 218-227, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241814

RESUMEN

This study describes the chemical modification of chitosan to produce a novel bifunctionalized adsorbent material (C4) for the removal of Cu2+ and oxyanions of Cr6+ from a single aqueous solution. The chemical modifications allowed C4 to be insoluble under acidic conditions, improving the chemical properties of the modified chitosan in aqueous solution. C4 adsorbent was synthesized by reaction of the amino group of chitosan with 2-pyridinecarboxaldehyde, a reduction of imine group, followed by esterification with EDTA dianhydride (EDTAD). C4 was characterized by solid-state 13C nuclear magnetic resonance, infrared spectroscopy, and elemental analysis. The adsorption studies of Cu2+ and oxyanions of Cr6+ in a batch mode were evaluated as a function of the contact time (kinetics), solution pH, and initial metal ion concentration. The maximum adsorption capacities (Qmax) of C4 for the adsorption of Cu2+ (pH 5.5) and Cr6+ (pH 2.0) were 2.60 and 3.50 mmol/g, respectively. The reusability of the recovered C4 adsorbent was also evaluated.

4.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(5): 1003-1006, Sept.-Oct. 2011. tab
Artículo en Inglés | LILACS | ID: lil-604261

RESUMEN

The aim of this work was to evaluate the oil extracted from Moringa oleifera (fam. Moringaceae) seeds from the nutritional standpoint. Nutritional evaluation of crude or degummed moringa oil or soybean oil (as a control) involved the determination of the Food Efficiency (FE) in male Fisher rats and the fatty acid composition of the moringa oil. Hepatic and renal functions were assessed by measuring serum transaminases activity and urea and creatinine concentrations, respectively. Serum cholesterol and triglycerides, alkaline phosphatase, total proteins and albumine were also measured. Results showed that FE was slightly increased by the crude moringa oil while no differences were found between the soybean and degummed moringa oil regarding this parameter. Renal or hepatic injures as well as major alterations in serum proteins were not induced by the tested oils. These results suggested that degummed M. oleifera oil possessed adequate biological quality as compared to the crude oil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA