Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bratisl Lek Listy ; 120(2): 139-143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30793618

RESUMEN

OBJECTIVE: Organophosphorus Acid Anhydrolase (OPAA) is used as one of the most important enzymes in the decontamination process of organophosphate compounds. In this study, we aimed to evaluate the effects of amino acid substitution in OPAA's substrate-binding site on its catalytic activity using the rational engineering strategy. METHODS: The native and three mutant forms of OPAA enzyme including 4ZWP, 4ZWU and Mut6 were studied using the docking technique toward parathion, paraoxon and R-VX compounds. Furthermore, enzyme assay was performed on the native OPAA and Mut6 toward parathion. RESULTS: Docking results showed a decreased catalytic activity of the mutant forms toward parathion and paraoxon. Furthermore, enzyme assay showed in accordance with docking results a decreased activity of Mut6 compared to the native form. The results of docking prediction for R-VX showed an increased catalytic activity of 4ZWP and 4ZWU. 4ZWU had the highest activity, while the activity of Mut6 was lower than the native form. CONCLUSION: Amino acid positions of 212 and 342 seem to be important sites in the small pocket of OPAA affecting the enzyme catalytic activity. Therefore, substitution of these sites with appropriate amino acids depending on the substrate structure, can affect the enzyme catalytic efficiency (Tab. 2, Fig. 3, Ref. 30).


Asunto(s)
Aminoácidos , Arildialquilfosfatasa , Simulación del Acoplamiento Molecular , Arildialquilfosfatasa/química , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA