Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189069

RESUMEN

Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.


Asunto(s)
Organoides , Humanos , Animales , Organoides/efectos de los fármacos , Organoides/metabolismo , Evaluación Preclínica de Medicamentos , Industria Farmacéutica
2.
Arch Toxicol ; 94(9): 3185-3200, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583097

RESUMEN

Drug-induced liver injury (DILI) continues to be a major cause of drug attrition and restrictive labeling. Given the importance of farnesoid X receptor (FXR) in bile acid homeostasis, drug-related FXR antagonism may be an important mechanism of DILI. However, a comprehensive assessment of this phenomenon broadly in the context of DILI is lacking. As such, we used an orthogonal approach comprising a FXR target gene assay in primary human hepatocytes and a commercially available FXR reporter assay to investigate the potential FXR antagonistic effects of an extensive test set of 159 compounds with and without association with clinical DILI. Data were omitted from analysis based on the presence of cytotoxicity to minimize false positive assay signals and other complications in data interpretation. Based on the experimental approaches employed and corresponding data, the prevalence of FXR antagonism was relatively low across this broad DILI test set, with 16-24% prevalence based on individual assay results or combined signals in both assays. Moreover, FXR antagonism was not highly predictive for identifying clinically relevant hepatotoxicants retrospectively, where FXR antagonist classification alone had minimal to moderate predictive value as represented by positive and negative likelihood ratios of 2.24-3.84 and 0.72-0.85, respectively. The predictivity did not increase significantly when considering only compounds with high clinical exposure (maximal or efficacious plasma exposures > 1.0 µM). In contrast, modest gains in predictive value of FXR antagonism were observed considering compounds that also inhibit bile salt export pump. In addition, we have identified novel FXR antagonistic effects of well-studied hepatotoxic drugs, including bosentan, tolcapone and ritonavir. In conclusion, this work represents a comprehensive evaluation of FXR antagonism in the context of DILI, including its overall predictivity and challenges associated with detecting this phenomenon in vitro.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Ácidos y Sales Biliares , Bioensayo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hepatocitos , Humanos , Estudios Retrospectivos
3.
PLoS One ; 14(1): e0208958, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30601836

RESUMEN

Hepatic fibrosis develops from a series of complex interactions among resident and recruited cells making it a challenge to replicate using standard in vitro approaches. While studies have demonstrated the importance of macrophages in fibrogenesis, the role of Kupffer cells (KCs) in modulating the initial response remains elusive. Previous work demonstrated utility of 3D bioprinted liver to recapitulate basic fibrogenic features following treatment with fibrosis-associated agents. In the present study, culture conditions were modified to recapitulate a gradual accumulation of collagen within the tissues over an extended exposure timeframe. Under these conditions, KCs were added to the model to examine their impact on the injury/fibrogenic response following cytokine and drug stimuli. A 28-day exposure to 10 ng/mL TGF-ß1 and 0.209 µM methotrexate (MTX) resulted in sustained LDH release which was attenuated when KCs were incorporated in the model. Assessment of miR-122 confirmed early hepatocyte injury in response to TGF-ß1 that appeared delayed in the presence of KCs, whereas MTX-induced increases in miR-122 were observed when KCs were incorporated in the model. Although the collagen responses were mild under the conditions tested to mimic early fibrotic injury, a global reduction in cytokines was observed in the KC-modified tissue model following treatment. Furthermore, gene expression profiling suggests KCs have a significant impact on baseline tissue function over time and an important modulatory role dependent on the context of injury. Although the number of differentially expressed genes across treatments was comparable, pathway enrichment suggests distinct, KC- and time-dependent changes in the transcriptome for each agent. As such, the incorporation of KCs and impact on baseline tissue homeostasis may be important in recapitulating temporal dynamics of the fibrogenic response to different agents.


Asunto(s)
Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Metotrexato/toxicidad , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Macrófagos del Hígado/efectos de los fármacos , Hígado/efectos de los fármacos , Cirrosis Hepática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
4.
Toxicol Sci ; 154(2): 354-367, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27605418

RESUMEN

Compound-induced liver injury leading to fibrosis remains a challenge for the development of an Adverse Outcome Pathway useful for human risk assessment. Latency to detection and lack of early, systematically detectable biomarkers make it difficult to characterize the dynamic and complex intercellular interactions that occur during progressive liver injury. Here, we demonstrate the utility of bioprinted tissue constructs comprising primary hepatocytes, hepatic stellate cells, and endothelial cells to model methotrexate- and thioacetamide-induced liver injury leading to fibrosis. Repeated, low-concentration exposure to these compounds enabled the detection and differentiation of multiple modes of liver injury, including hepatocellular damage, and progressive fibrogenesis characterized by the deposition and accumulation of fibrillar collagens in patterns analogous to those described in clinical samples obtained from patients with fibrotic liver injury. Transient cytokine production and upregulation of fibrosis-associated genes ACTA2 and COL1A1 mimics hallmark features of a classic wound-healing response. A surge in proinflammatory cytokines (eg, IL-8, IL-1ß) during the early culture time period is followed by concentration- and treatment-dependent alterations in immunomodulatory and chemotactic cytokines such as IL-13, IL-6, and MCP-1. These combined data provide strong proof-of-concept that 3D bioprinted liver tissues can recapitulate drug-, chemical-, and TGF-ß1-induced fibrogenesis at the cellular, molecular, and histological levels and underscore the value of the model for further exploration of compound-specific fibrogenic responses. This novel system will enable a more comprehensive characterization of key attributes unique to fibrogenic agents during the onset and progression of liver injury as well as mechanistic insights, thus improving compound risk assessment.


Asunto(s)
Bioimpresión/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Cirrosis Hepática/inducido químicamente , Hígado/efectos de los fármacos , Metotrexato/toxicidad , Impresión Tridimensional , Tioacetamida/toxicidad , Biomarcadores/metabolismo , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Técnicas de Cocultivo , Colágeno/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Estudios de Factibilidad , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Fenotipo , Medición de Riesgo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA