Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 66(10): 4372-7, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11010885

RESUMEN

An understanding of the factors influencing colonization of the rhizosphere is essential for improved establishment of biocontrol agents. The aim of this study was to determine the origin and composition of bacterial communities in the developing barley (Hordeum vulgare) phytosphere, using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified from extracted DNA. Discrete community compositions were identified in the endorhizosphere, rhizoplane, and rhizosphere soil of plants grown in an agricultural soil for up to 36 days. Cluster analysis revealed that DGGE profiles of the rhizoplane more closely resembled those in the soil than the profiles found in the root tissue or on the seed, suggesting that rhizoplane bacteria primarily originated from the surrounding soil. No change in bacterial community composition was observed in relation to plant age. Pregermination of the seeds for up to 6 days improved the survival of seed-associated bacteria on roots grown in soil, but only in the upper, nongrowing part of the rhizoplane. The potential occurrence of skewed PCR amplification was examined, and only minor cases of PCR bias for mixtures of two different DNA samples were observed, even when one of the samples contained plant DNA. The results demonstrate the application of culture-independent, molecular techniques in assessment of rhizosphere bacterial populations and the importance of the indigenous soil population in colonization of the rhizosphere.


Asunto(s)
Bacterias/clasificación , Hordeum/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida/métodos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo
2.
Appl Environ Microbiol ; 65(10): 4646-51, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10508101

RESUMEN

The gfp-tagged Pseudomonas fluorescens biocontrol strain DR54-BN14 was introduced into the barley rhizosphere. Confocal laser scanning microscopy revealed that the rhizoplane populations of DR54-BN14 on 3- to 14-day-old roots were able to form microcolonies closely associated with the indigenous bacteria and that a majority of DR54-BN14 cells appeared small and almost coccoid. Information on the viability of the inoculant was provided by a microcolony assay, while measurements of cell volume, the intensity of green fluorescent protein fluorescence, and the ratio of dividing cells to total cells were used as indicators of cellular activity. At a soil moisture close to the water-holding capacity of the soil, the activity parameters suggested that the majority of DR54-BN14 cells were starving in the rhizosphere. Nevertheless, approximately 80% of the population was either culturable or viable but nonculturable during the 3-week incubation period. No impact of root decay on viability was observed, and differences in viability or activity among DR54-BN14 cells located in different regions of the root were not apparent. In dry soil, however, the nonviable state of DR54-BN14 was predominant, suggesting that desiccation is an important abiotic regulator of cell viability.


Asunto(s)
Hordeum/microbiología , Proteínas Luminiscentes/metabolismo , Pseudomonas fluorescens/fisiología , Proteínas Fluorescentes Verdes , Microscopía Confocal , Pseudomonas fluorescens/crecimiento & desarrollo
3.
Appl Environ Microbiol ; 64(5): 1902-9, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9572970

RESUMEN

Conjugal plasmid transfer was examined on the phylloplane of bean (Phaseolus vulgaris) and related to the spatial distribution pattern and metabolic activity of the bacteria. The donor (Pseudomonas putida KT2442) harbored a derivative of the TOL plasmid, which conferred kanamycin resistance and had the gfp gene inserted downstream of a lac promoter. A chromosomal insertion of lacIq prevented expression of the gfp gene. The recipient (P. putida KT2440) had a chromosomal tetracycline resistance marker. Thus, transconjugants could be enumerated by plating and visualized in situ as green fluorescent cells. Sterile bean seedlings were inoculated with donors and recipients at densities of approximately 10(5) cells per cm2. To manipulate the density and metabolic activity (measured by incorporation of [3H]leucine) of the inoculated bacteria, plants were grown at various relative humidities (RH). At 100% RH, the transconjugants reached a density of 3 x 10(3) CFU/cm2, corresponding to about one-third of the recipient population. At 25% RH, numbers of transconjugants were below the detection limit. Immediately after inoculation onto the leaves, the per-cell metabolic activity of the inocula increased by up to eight times (100% RH), followed by a decrease to the initial level after 96 h. The metabolic activity of the bacteria was not rate limiting for conjugation, and no correlation between the two parameters was observed. Apparently, leaf exudates insured that the activity of the bacteria was above a threshold value for transfer to occur. Transconjugants were primarily observed in junctures between epidermal cells and in substomatal cavities. The distribution of the transconjugants was similar to the distribution of indigenous bacteria on nonsterile leaves. Compared to polycarbonate filters, with cell densities equal to the overall density on the leaves, transfer ratios on leaves were up to 30 times higher. Thus, aggregation of the bacteria into microhabitats on the phylloplane had a great stimulatory effect on transfer.


Asunto(s)
Bacterias/crecimiento & desarrollo , Conjugación Genética , Fabaceae/microbiología , Técnicas de Transferencia de Gen , Plantas Medicinales , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA