Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(22): 32894-32906, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114964

RESUMEN

Aluminum gallium arsenide (AlGaAs) and related III-V semiconductors have excellent optoelectronic properties. They also possess strong material nonlinearity as well as high refractive indices. In view of these properties, AlGaAs is a promising candidate for integrated photonics, including both linear and nonlinear devices, passive and active devices, and associated applications. Low propagation loss is essential for integrated photonics, particularly in nonlinear applications. However, achieving low-loss and high-confinement AlGaAs photonic integrated circuits poses a challenge. Here we show an effective reduction of surface-roughness-induced scattering loss in fully etched high-confinement AlGaAs-on-insulator nanowaveguides by using a heterogeneous wafer-bonding approach and optimizing fabrication techniques. We demonstrate ultrahigh-quality AlGaAs microring resonators and realize quality factors up to 3.52 × 106 and finesses as high as 1.4 × 104. We also show ultra-efficient frequency comb generations in those resonators and achieve record-low threshold powers on the order of ∼20 µW and ∼120 µW for the resonators with 1 THz and 90 GHz free-spectral ranges, respectively. Our result paves the way for the implementation of AlGaAs as a novel integrated material platform specifically for nonlinear photonics and opens a new window for chip-based efficiency-demanding practical applications.

2.
Opt Lett ; 45(17): 4887-4890, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870883

RESUMEN

This work experimentally investigates the impact of p-doping on the relative intensity noise (RIN) properties and subsequently on the modulation properties of semiconductor quantum dot (QD) lasers epitaxially grown on silicon. Owing to the low threading dislocation density and the p-modulation doped GaAs barrier layer in the active region, the RIN level is found very stable with temperature with a minimum value of -150dB/Hz. The dynamical features extracted from the RIN spectra show that p-doping between zero and 20 holes/dot strongly modifies the modulation properties and gain nonlinearities through increased internal losses in the active region and thereby hinders the maximum achievable bandwidth. Overall, this Letter is important for designing future high-speed and low-noise QD devices integrated in future photonic integrated circuits.

3.
Opt Lett ; 45(10): 2812-2815, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32412473

RESUMEN

Superlattice structures of In(Al)GaAs with localized ErAs trap centers feature excellent material properties for terahertz (THz) generation and detection. The carrier lifetime of these materials as emitter and receiver has been measured as 1.76 ps and 0.39 ps, respectively. Packaged photoconductors driven by a 1550 nm, 90 fs commercial Toptica "TeraFlash pro" system feature a 4.5 THz single shot bandwidth with more than 60 dB dynamic range. The emitted THz power of the ErAs:In(Al)GaAs emitter versus laser power has been recorded with a pyroelectric detector calibrated by the Physikalisch Technische Bundesanstalt (PTB). The maximum power was 164 µW at a laser power of 42 mW and a bias of 200 V.

4.
ACS Nano ; 14(3): 3519-3527, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32083840

RESUMEN

Photodiodes and integrated optical receivers operating at 1.55 micrometer (µm) wavelength are crucial for long-haul communication and data transfer systems. In this paper, we report C-band InAs quantum dash (Qdash) waveguide photodiodes (PDs) with a record-low dark current of 5 pA, a responsivity of 0.26 A/W at 1.55 µm, and open eye diagrams up to 10 Gb/s. These Qdash-based PDs leverage the same epitaxial layers and processing steps as Qdash lasers and can thus be integrated with laser sources for power monitors or amplifiers for preamplified receivers, manifesting themselves as a promising alternative to their InGaAs and Ge counterparts in low-power optical communication links.

5.
Opt Express ; 27(19): 27256-27266, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31674590

RESUMEN

Mode-locked InAs/InGaAs quantum dot lasers emitting optical frequency combs centered at 1310 nm are promising sources for high-speed and high-capacity communication applications. We report on the stable optical pulse train generation by a monolithic passively mode-locked edge-emitting two-section quantum dot laser based on a five-stack InAs/InGaAs dots-in-a-well structure directly grown on an on-axis (001) silicon substrate by solid-source molecular beam epitaxy. Optical pulses as short as 1.7 ps at a pulse repetition rate or inter-mode beat frequency of 9.4 GHz are obtained. A minimum pulse-to-pulse timing jitter of 9 fs, corresponding to a repetition rate line width of 400 Hz, is demonstrated. The generated optical frequency combs yield exceptional low amplitude jitter performance and comb widths exceed 5.5 nm at a -3 dB criteria, containing more than 100 comb carriers.

6.
Opt Express ; 26(6): 7022-7033, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609387

RESUMEN

We report the first demonstration of direct modulation of InAs/GaAs quantum dot (QD) lasers grown on on-axis (001) Si substrate. A low threading dislocation density GaAs buffer layer enables us to grow a high quality 5-layered QD active region on on-axis Si substrate. The active layer has p-modulation doped GaAs barrier layers with a hole concentration of 5 × 1017 cm-3to suppress gain saturation. Small-signal measurement on a 3 × 580 µm2 Fabry-Perot laser showed a 3dB bandwidth of 6.5 GHz at a bias current of 116 mA. A 12.5 Gbit/s non-return-to-zero signal modulation was achieved by directly probing the chip. Open eyes with an extinction ration of 3.3dB was observed at room temperature. The bit-error-rate (BER) curve showed no error-floor up to BER of 1 × 10-13. 12 km single-mode fiber transmission experiments using the QD laser on Si showed a low power penalty of 1 dB at 5Gbit/s. These results demonstrate the potential for QD lasers epitaxially grown on Si to be used as a low-cost light source for optical communication systems.

7.
Opt Express ; 25(22): 26853-26860, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092170

RESUMEN

We report statistical comparisons of lasing characteristics in InAs quantum dot (QD) micro-rings directly grown on on-axis (001) GaP/Si and V-groove (001) Si substrates. CW thresholds as low as 3 mA and high temperature operation exceeding 80 °C were simultaneously achieved on the GaP/Si template template with an outer-ring radius of 50 µm and a ring width of 4 µm, while a sub-milliamp threshold of 0.6 mA was demonstrated on the V-groove Si template with a smaller cavity size of 5-µm outer-ring radius and 3-µm ring width. Evaluations were also made with devices fabricated simultaneously on native GaAs substrates over a significant sampling analysis. The overall assessment spotlights compelling insights in exploring the optimum epitaxial scheme for low-threshold lasing on industry standard Si substrates.

8.
Opt Express ; 25(22): 27715-27723, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092242

RESUMEN

We report InAs/InGaAs quantum dot (QD) waveguide photodetectors (PD) monolithically grown on silicon substrates. A high-crystalline quality GaAs-on-Si template was achieved by aspect ratio trapping together with the combined effects of cyclic thermal annealing and strain-balancing layer stacks. An ultra-low dark current of 0.8 nA and an internal responsivity of 0.9 A/W were measured in the O band. We also report, to the best of our knowledge, the first characterization of high-speed performance and the first demonstration of the on-chip photodetection for this QD-on-silicon system. The monolithically integrated waveguide PD shares the same platform as the previously demonstrated micro-ring lasers and can thus be integrated with laser sources for power monitors or amplifiers for pre-amplified receivers.

9.
Opt Express ; 25(4): 3927-3934, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241602

RESUMEN

High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. We achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.

10.
Opt Lett ; 42(2): 338-341, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28081107

RESUMEN

We demonstrate the first electrically pumped continuous-wave (CW) III-V semiconductor lasers epitaxially grown on on-axis (001) silicon substrates without offcut or germanium layers, using InAs/GaAs quantum dots as the active region and an intermediate GaP buffer between the silicon and device layers. Broad-area lasers with uncoated facets achieve room-temperature lasing with threshold current densities around 860 A/cm2 and 110 mW of single-facet output power for the same device. Ridge lasers designed for low threshold operations show maximum lasing temperatures up to 90°C and thresholds down to 30 mA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA