Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1091, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891212

RESUMEN

Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the 'release-of-inhibition' model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.


Asunto(s)
Calcio , Sinapsis , Calcio/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas SNARE/metabolismo , Neurotransmisores/metabolismo
2.
Res Sq ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37163032

RESUMEN

Calcium-evoked release of neurotransmitters from synaptic vesicles (SVs) is catalysed by SNARE proteins. The predominant view is that, at rest, complete assembly of SNARE complexes is inhibited ('clamped') by synaptotagmin and complexin molecules. Calcium binding by synaptotagmins releases this fusion clamp and triggers fast SV exocytosis. However, this model has not been quantitatively tested over physiological timescales. Here we describe an experimentally constrained computational modelling framework to quantitatively assess how the molecular architecture of the fusion clamp affects SV exocytosis. Our results argue that the "release-of-inhibition" model can indeed account for fast calcium-activated SV fusion, and that dual binding of synaptotagmin-1 and synaptotagmin-7 to the same SNARE complex enables synergistic regulation of the kinetics and plasticity of neurotransmitter release. The developed framework provides a powerful and adaptable tool to link the molecular biochemistry of presynaptic proteins to physiological data and efficiently test the plausibility of calcium-activated neurotransmitter release models.

3.
Synapse ; 74(12): e22178, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32598500

RESUMEN

Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF-CA3 synapse. We found that asynchronous release at MF-CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst-evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q-type voltage-gated Ca2+ channels, while the contribution of N-type VGCCs was limited. Overall, our results uncover the determinants of long-lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.


Asunto(s)
Potenciales de Acción , Región CA3 Hipocampal/fisiología , Calcio/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Animales , Región CA3 Hipocampal/metabolismo , Canales de Calcio/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA