Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Adv Sci (Weinh) ; : e2407619, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246205

RESUMEN

Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.

2.
Mol Aspects Med ; 99: 101302, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094449

RESUMEN

Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Animales , Transporte de ARN , MicroARNs/metabolismo , MicroARNs/genética , Comunicación Celular , Transporte Biológico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN/metabolismo , ARN/genética , Biomarcadores
3.
Clin Transl Med ; 14(8): e70002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167024

RESUMEN

BACKGROUND AND MAIN BODY: Pharmacokinetics (PK) and pharmacodynamics (PD) are central concepts to guide the dosage and administration of drug therapies and are essential to consider for both healthcare professionals and researchers in therapeutic planning and drug discovery. PK/PD properties of a drug significantly influence variability in response to treatment, including therapeutic failure or excessive medication-related harm. Furthermore, suboptimal PK properties constitute a significant barrier to further development for some candidate treatments in drug discovery. This article describes how extracellular vesicles (EVs) affect different aspects of PK and PD of medications and their potential to modulate PK and PD properties to address problematic PK/PD profiles of drugs. We reviewed EVs' intrinsic effects on cell behaviours and medication responses. We also described how surface and cargo modifications can enhance EV functionalities and enable them as adjuvants to optimise the PK/PD profile of conventional medications. Furthermore, we demonstrated that various bioengineering strategies can be used to modify the properties of EVs, hence enhancing their potential to modulate PK and PD profile of medications. CONCLUSION: This review uncovers the critical role of EVs in PK and PD modulation and motivates further research and the development of assays to unfold EVs' full potential in solving PK and PD-related problems. However, while we have shown that EVs play a vital role in modulating PK and PD properties of medications, we postulated that it is essential to define the context of use when designing and utilising EVs in pharmaceutical and medical applications. HIGHLIGHTS: Existing solutions for pharmacokinetics and pharmacodynamics modulation are limited. Extracellular vesicles can optimise pharmacokinetics as a drug delivery vehicle. Biogenesis and administration of extracellular vesicles can signal cell response. The pharmaceutical potential of extracellular vesicles can be enhanced by surface and cargo bioengineering. When using extracellular vesicles as modulators of pharmacokinetics and pharmacodynamics, the 'context of use' must be considered.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/efectos de los fármacos , Humanos , Farmacocinética
4.
J Extracell Vesicles ; 13(7): e12471, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944672

RESUMEN

Haematopoiesis dysregulation with the presence of immature myeloid and erythroid immunosuppressive cells are key characteristics of the immune escape phase of tumour development. Here, the role of in vitro generated B16F10 tumour cell-derived extracellular vesicles (tEVs) as indirect cellular communicators, participating in tumour-induced dysregulation of haematopoiesis, was explored. The isolated tEVs displayed features of small EVs with a size range of 100-200 nm, expressed the common EV markers CD63, CD9, and Alix, and had a spherical shape with a lipid bilayer membrane. Proteomic profiling revealed significant levels of angiogenic factors, particularly vascular endothelial growth factor (VEGF), osteopontin, and tissue factor, associated with the tEVs. Systemic administration of these tEVs in syngeneic mice induced splenomegaly and disrupted haematopoiesis, leading to extramedullary haematopoiesis, expansion of splenic immature erythroid progenitors, reduced bone marrow cellularity, medullary expansion of granulocytic myeloid suppressor cells, and the development of anaemia. These effects closely mirrored those observed in tumour-bearing mice and were not seen after heat inactivating the tEVs. In vitro studies demonstrated that tEVs independently induced the expansion of bone marrow granulocytic myeloid suppressor cells and B cells while reducing the frequency of cells in the erythropoietic lineage. These effects of tEVs were significantly abrogated by the blockade of VEGF or heat inactivation. Our findings underscore the important role of tEVs in dysregulating haematopoiesis during the immune escape phase of cancer immunoediting, suggesting their potential as targets for addressing immune evasion and reinstating normal hematopoietic processes.


Asunto(s)
Vesículas Extracelulares , Hematopoyesis , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Ratones , Melanoma Experimental/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral
5.
Nat Biomed Eng ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769158

RESUMEN

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

6.
Nat Commun ; 14(1): 4734, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550290

RESUMEN

Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.


Asunto(s)
Vesículas Extracelulares , Ratones , Animales , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistemas de Liberación de Medicamentos , Transporte de Proteínas , Comunicación Celular
8.
J Extracell Vesicles ; 11(7): e12248, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879268

RESUMEN

Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Albúminas/análisis , Animales , Tiempo de Circulación Sanguínea , Modelos Animales de Enfermedad , Vesículas Extracelulares/química , Humanos , Ganglios Linfáticos , Ratones , Neoplasias/metabolismo , Tetraspaninas/análisis
9.
Front Physiol ; 12: 689179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721051

RESUMEN

Splice-switching antisense oligonucleotide- (SSO-) mediated correction of framedisrupting mutation-containing premessenger RNA (mRNA) transcripts using exon skipping is a highly promising treatment method for muscular diseases such as Duchenne muscular dystrophy (DMD). Phosphorothioate (PS) chemistry, a commonly used oligonucleotide modification, has been shown to increase the stability of and improve the pharmacokinetics of SSOs. However, the effect of PS inclusion in 2'-O-methyl SSOs (2OMe) on cellular uptake and splice switching is less well-understood. At present, we demonstrate that the modification of PS facilitates the uptake of 2OMe in H2k-mdx myoblasts. Furthermore, we found a dependency of SSO nuclear accumulation and high splice-switching activity on PS inclusion in 2OMe (2OMePS), as tested in various reporter cell lines carrying pLuc/705. Increased exon-inclusion activity was observed in muscle, neuronal, liver, and bone cell lineages via both the gymnotic uptake and lipofection of 2OMePS. Using the photoactivatable ribonucleoside-enhanced crosslinking and a subsequent proteomic approach, we identified several 2OMePS-binding proteins, which are likely to play a role in the trafficking of 2OMePS to the nucleus. Ablation of one of them, Ncl by small-interfering RNA (siRNA) enhanced 2OMePS uptake in C2C12 myoblasts and upregulated luciferase RNA splicing in the HeLa Luc/705 reporter cell line. Overall, we demonstrate that PS inclusion increases nuclear delivery and splice switching in muscle, neuronal, liver, and bone cell lineages and that the modulation of 2OMePS-binding partners may improve SSO delivery.

10.
J Extracell Vesicles ; 10(12): e12142, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34595842

RESUMEN

Up to now, the field of liquid biopsies has focused on circulating tumour DNA and cells, though extracellular vesicles (EVs) have been of increasing interest in recent years. Thus, reported sources of tumour-derived nucleic acids include leukocytes, platelets and apoptotic bodies (AB), as well as large (LEV) and small (SEV) EVs. Despite these competing claims, there has yet to be a standardized comparison of the tumour-derived DNA associated with different components of blood. To address this issue, we collected twenty-three blood samples from seventeen patients with pancreatic cancers of known mutant KRAS G12 genotype, and divided them into two groups based on the time of patient survival following sampling. After collecting red and white blood cells, we subjected 1 ml aliquots of platelet rich plasma to differential centrifugation in order to separate the platelets, ABs, LEVs, SEVs and soluble proteins (SP) present. We then confirmed the enrichment of specific blood components in each differential centrifugation fraction using electron microscopy, Western blotting, nanoparticle tracking analysis and bead-based multiplex flow cytometry assays. By targeting wild type and tumour-specific mutant KRAS alleles using digital PCR, we found that the levels of mutant KRAS DNA were highest in association with LEVs and SEVs early, and with SEVs and SP late in disease progression. Importantly, we established that SEVs were the most enriched in tumour-derived DNA throughout disease progression, and verified this association using size exclusion chromatography. This work provides important direction for the rapidly expanding field of liquid biopsies by supporting an increased focus on EVs as a source of tumour-derived DNA.


Asunto(s)
ADN Tumoral Circulante/metabolismo , ADN/metabolismo , Vesículas Extracelulares/metabolismo , Biopsia Líquida/métodos , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Humanos , Neoplasias Pancreáticas
11.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34616047

RESUMEN

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Asunto(s)
Vesículas Extracelulares , Enfermedades Neuroinflamatorias , Animales , Citocinas , Inflamación , Ratones , Factor de Necrosis Tumoral alfa
12.
Pharmaceutics ; 13(6)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198625

RESUMEN

The toolbox for genetic engineering has quickly evolved from CRISPR/Cas9 to a myriad of different gene editors, each with promising properties and enormous clinical potential. However, a major challenge remains: delivering the CRISPR machinery to the nucleus of recipient cells in a nontoxic and efficient manner. In this article, we repurpose an RNA-delivering cell-penetrating peptide, PepFect14 (PF14), to deliver Cas9 ribonucleoprotein (RNP). The RNP-CPP complex achieved high editing rates, e.g., up to 80% in HEK293T cells, while being active at low nanomolar ranges without any apparent signs of toxicity. The editing efficiency was similar to or better compared to the commercially available reagents RNAiMAX and CRISPRMax. The efficiency was thoroughly evaluated in reporter cells and wild-type cells by restriction enzyme digest and next-generation sequencing. Furthermore, the CPP-Cas9-RNP complexes were demonstrated to withstand storage at different conditions, including freeze-thaw cycles and freeze-drying, without a loss in editing efficiency. This CPP-based delivery strategy complements existing technologies and further opens up new opportunities for Cas9 RNP delivery, which can likely be extended to other gene editors in the future.

13.
Cells ; 10(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207405

RESUMEN

The extracellular environment consists of a plethora of molecules, including extracellular miRNA that can be secreted in association with extracellular vesicles (EVs) or soluble protein complexes (non-EVs). Yet, interest in therapeutic short RNA carriers lies mainly in EVs, the vehicles conveying the great majority of the biological activity. Here, by overexpressing miRNA and shRNA sequences in parent cells and using size exclusion liquid chromatography (SEC) to separate the secretome into EV and non-EV fractions, we saw that >98% of overexpressed miRNA was secreted within the non-EV fraction. Furthermore, small RNA sequencing studies of native miRNA transcripts revealed that although the abundance of miRNAs in EVs, non-EVs and parent cells correlated well (R2 = 0.69-0.87), quantitatively an outstanding 96.2-99.9% of total miRNA was secreted in the non-EV fraction. Nevertheless, though EVs contained only a fraction of secreted miRNAs, these molecules were stable at 37 °C in a serum-containing environment, indicating that if sufficient miRNA loading is achieved, EVs can remain delivery-competent for a prolonged period of time. This study suggests that the passive endogenous EV loading strategy might be a relatively wasteful way of loading miRNA to EVs, and active miRNA loading approaches are needed for developing advanced EV miRNA therapies in the future.


Asunto(s)
Vesículas Extracelulares/genética , Vesículas Extracelulares/fisiología , ARN Interferente Pequeño/genética , Línea Celular , Células HEK293 , Humanos , MicroARNs/genética , Análisis de Secuencia de ARN/métodos
14.
Front Physiol ; 12: 698166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095541

RESUMEN

In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate's muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.

15.
Biomaterials ; 266: 120435, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049461

RESUMEN

The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.


Asunto(s)
Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animales , Interleucina-6 , Ratones , Fibras Musculares Esqueléticas , Transducción de Señal
16.
J Vis Exp ; (159)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32955503

RESUMEN

Duchenne muscular dystrophy (DMD) is a degenerative muscle disease that causes progressive loss of muscle mass, leading to premature death. The mutations often cause a distorted reading frame and premature stop codons, resulting in an almost total lack of dystrophin protein. The reading frame can be corrected using antisense oligonucleotides (AONs) that induce exon skipping. The morpholino AON viltolarsen (code name: NS-065/NCNP-01) has been shown to induce exon 53 skipping, restoring the reading frame for patients with exon 52 deletions. We recently administered NS-065/NCNP-01 intravenously to DMD patients in an exploratory investigator-initiated, first-in-human trial of NS-065/NCNP-01. In this methods article, we present the molecular characterization of dystrophin expression using Sanger sequencing, RT-PCR, and western blotting in the clinical trial. The characterization of dystrophin expression was fundamental in the study for showing the efficacy since no functional outcome tests were performed.


Asunto(s)
Ensayos Clínicos como Asunto , Exones/genética , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/genética , Anticuerpos Bloqueadores/metabolismo , Secuencia de Bases , Biopsia , ADN Complementario/genética , Distrofina/genética , Electroforesis por Microchip , Humanos , Músculos/patología , Mutación/genética , Isoformas de Proteínas/genética , ARN/aislamiento & purificación
17.
J Extracell Vesicles ; 9(1): 1800222, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32944187

RESUMEN

Extracellular vesicles (EVs) are naturally occurring nano-sized carriers that are secreted by cells and facilitate cell-to-cell communication by their unique ability to transfer biologically active cargo. Despite the pronounced increase in our understanding of EVs over the last decade, from disease pathophysiology to therapeutic drug delivery, improved molecular tools to track their therapeutic delivery are still needed. Unfortunately, the present catalogue of tools utilised for EV labelling lacks sensitivity or are not sufficiently specific. Here, we have explored the bioluminescent labelling of EVs using different luciferase enzymes tethered to CD63 to achieve a highly sensitive system for in vitro and in vivo tracking of EVs. Using tetraspanin fusions to either NanoLuc or ThermoLuc permits performing highly sensitive in vivo quantification of EVs or real-time imaging, respectively, at low cost and in a semi-high throughput manner. We find that the in vivo distribution pattern of EVs is determined by the route of injection, but that different EV subpopulations display differences in biodistribution patterns. By applying this technology for real-time non-invasive in vivo imaging of EVs, we show that their distribution to different internal organs occurs just minutes after administration.

18.
Adv Drug Deliv Rev ; 159: 332-343, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32305351

RESUMEN

Over the past decades, a multitude of synthetic drug delivery systems has been developed and introduced to the market. However, applications of such systems are limited due to inefficiency, cytotoxicity and/or immunogenicity. At the same time, the field of natural drug carrier systems has grown rapidly. One of the most prominent examples of such natural carriers are extracellular vesicles (EVs). EVs are cell-derived membranous particles which play important roles in intercellular communication. EVs possess a number of characteristics that qualify them as promising vehicles for drug delivery. In order to take advantage of these attributes, an in-depth understanding of why EVs are such unique carrier systems and how we can exploit their qualities is pivotal. Here, we review unique EV features that are relevant for drug delivery and highlight emerging strategies to make use of those features for drug loading and targeted delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Animales , Vesículas Extracelulares/metabolismo , Humanos
19.
J Extracell Vesicles ; 8(1): 1663043, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579435

RESUMEN

Extracellular vesicles (EV) convey biological information by transmitting macromolecules between cells and tissues and are of great promise as pharmaceutical nanocarriers, and as therapeutic per se. Strategies for customizing the EV surface and cargo are being developed to enable their tracking, visualization, loading with pharmaceutical agents and decoration of the surface with tissue targeting ligands. While much progress has been made in the engineering of EVs, an exhaustive comparative analysis of the most commonly exploited EV-associated proteins, as well as a quantification at the molecular level are lacking. Here, we selected 12 EV-related proteins based on MS-proteomics data for comparative quantification of their EV engineering potential. All proteins were expressed with fluorescent protein (FP) tags in EV-producing cells; both parent cells as well as the recovered vesicles were characterized biochemically and biophysically. Using Fluorescence Correlation Spectroscopy (FCS) we quantified the number of FP-tagged molecules per vesicle. We observed different loading efficiencies and specificities for the different proteins into EVs. For the candidates showing the highest loading efficiency in terms of engineering, the molecular levels in the vesicles did not exceed ca 40-60 fluorescent proteins per vesicle upon transient overexpression in the cells. Some of the GFP-tagged EV reporters showed quenched fluorescence and were either non-vesicular, despite co-purification with EVs, or comprised a significant fraction of truncated GFP. The co-expression of each target protein with CD63 was further quantified by widefield and confocal imaging of single vesicles after double transfection of parent cells. In summary, we provide a quantitative comparison for the most commonly used sorting proteins for bioengineering of EVs and introduce a set of biophysical techniques for straightforward quantitative and qualitative characterization of fluorescent EVs to link single vesicle analysis with single molecule quantification.

20.
J Pathol ; 249(3): 271-273, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31322741

RESUMEN

The progress of antisense-based therapies using first generation Morpholino oligonucleotides for Duchenne muscular dystrophy (DMD) is expected to partially restore dystrophin expression and may prolong the lifespan of DMD patients. In a recent issue of The Journal of Pathology, a sophisticated study by Vila et al used a dystrophic mouse model of DMD to demonstrate that Morpholino-induced exon skipping induced dystrophin expression in skeletal muscle and stimulated cell mediated and humoral responses to dystrophin. The study highlights the need to further investigate the autoimmune response against de novo synthesised truncated dystrophin protein and its long-term consequences after exon-skipping therapy for DMD. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Distrofina/genética , Distrofia Muscular de Duchenne/genética , Animales , Autoinmunidad , Exones , Humanos , Ratones , Ratones Endogámicos mdx , Morfolinos , Oligonucleótidos Antisentido , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA