Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; : e17496, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161196

RESUMEN

Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.

2.
Proc Biol Sci ; 290(2013): 20231608, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113936

RESUMEN

Variation in the composition of skin-associated microbiomes has been attributed to host species, geographical location and habitat, but the role of intraspecific phenotypic variation among host individuals remains elusive. We explored if and how host environment and different phenotypic traits were associated with microbiome composition. We conducted repeated sampling of dorsal and ventral skin microbiomes of carp individuals (Cyprinus carpio) before and after translocation from laboratory conditions to a semi-natural environment. Both alpha and beta diversity of skin-associated microbiomes increased substantially within and among individuals following translocation, particularly on dorsal body sites. The variation in microbiome composition among hosts was significantly associated with body site, sun-basking, habitat switch and growth, but not temperature gain while basking, sex, personality nor colour morph. We suggest that the overall increase in the alpha and beta diversity estimates among hosts were induced by individuals expressing greater variation in behaviours and thus exposure to potential colonizers in the pond environment compared with the laboratory. Our results exemplify how biological diversity at one level of organization (phenotypic variation among and within fish host individuals) together with the external environment impacts biological diversity at a higher hierarchical level of organization (richness and composition of fish-associated microbial communities).


Asunto(s)
Carpas , Microbiota , Animales , Biodiversidad , Piel , ARN Ribosómico 16S
4.
Sci Rep ; 12(1): 8070, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577886

RESUMEN

Studies of life-history variation across a species range are crucial for ecological understanding and successful conservation. Here, we examined the growth and age of Wels catfish (Silurus glanis) in Sweden, which represent the northernmost populations in Europe. A total of 1183 individuals were captured, marked and released between 2006 and 2020. Mark-recapture data from 162 individuals (size range: 13-195 cm) were used to estimate von Bertalanffy growth curve parameters which revealed very slow growth rates compared to catfish within the core distribution area (central Europe). The fitted von Bertalanffy growth curve predicted a 150 cm catfish to be around 40 years old, while the largest recaptured individual (length 195 cm) was estimated to be 70 (95% CI 50-112) years old. This was substantially older than the previously documented maximum age of a catfish. The weight at length relationships in these northern peripheral populations were similar to those documented for catfish in central Europe indicating that resources did not constrain growth. This indicates that the slow growth and exceptional high age in the northern catfish populations are the result of lower temperatures and/or local adaptations.


Asunto(s)
Bagres , Longevidad , Adulto , Anciano , Anciano de 80 o más Años , Animales , Europa (Continente) , Humanos , Persona de Mediana Edad , Suecia
5.
Mol Ecol ; 31(4): 1093-1110, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874594

RESUMEN

Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.


Asunto(s)
Esocidae , Variación Genética , Adaptación Fisiológica , Animales , Biodiversidad , Evolución Biológica , Esocidae/genética , Variación Genética/genética , Genética de Población
6.
J Anim Ecol ; 90(10): 2236-2347, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34028836

RESUMEN

Life history theory posits that organisms should time their reproduction to coincide with environmental conditions that maximize their fitness. Population-level comparisons have contributed important insights on the adaptive value of reproductive timing and its association to environmental variation. Yet, despite its central role to ecology and evolution, the causes and consequences of variation in reproductive timing among individuals within populations are poorly understood in vertebrates other than birds. Using a combination of observational field studies and a split-brood experiment, we investigated whether differences in breeding time were associated with changes in hatching success, reproductive allocation and reaction norms linking offspring performance to temperature within an anadromous Baltic Sea population of perch Perca fluviatilis. Field observations revealed substantial variation in reproductive timing, with the breeding period lasting almost 2 months and occurring in temperatures ranging from 10 to 21℃. The hatching success of perch decreased as the reproductive season progressed. At the same time, the reproductive allocation strategy changed over the season, late breeders (the offspring of which were introduced into a high resource environment and increased predation pressure) produced more and smaller eggs that resulted in smaller larvae, compared with early breeders. The split-brood experiment in which eggs were incubated in different temperatures (10, 12, 15, 18°C) showed that differences in reproductive timing were associated with a change in the shape of the reaction norm linking offspring performance to water temperature indicative of adaptive phenotypic plasticity, with the offspring of early breeders performing best in low temperatures and the offspring of late breeders performing best in high temperatures. The seasonal changes in reproductive traits and the shape of the thermal performance suggest time-dependent adaptive differences among individuals within the population. Management actions aimed at preserving and restoring variation in the timing of reproductive events will thus likely also influence variation in associated life history traits and thermal performance curves, which could safeguard populations against environmental challenges and changes associated with exploitation and global warming.


Asunto(s)
Rasgos de la Historia de Vida , Percas , Animales , Reproducción , Estaciones del Año , Temperatura
7.
Proc Biol Sci ; 285(1879)2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848654

RESUMEN

In terrestrial environments, cold-blooded animals can attain higher body temperatures by sun basking, and thereby potentially benefit from broader niches, improved performance and higher fitness. The higher heat capacity and thermal conductivity of water compared with air have been universally assumed to render heat gain from sun basking impossible for aquatic ectotherms, such that their opportunities to behaviourally regulate body temperature are largely limited to choosing warmer or colder habitats. Here we challenge this paradigm. Using physical models we first show that submerged objects exposed to natural sunlight attain temperatures in excess of ambient water. We next demonstrate that free-ranging carp (Cyprinus carpio) can increase their body temperature during aquatic sun basking close to the surface. The temperature excess gained by basking was larger in dark than in pale individuals, increased with behavioural boldness, and was associated with faster growth. Overall, our results establish aquatic sun basking as a novel ecologically significant mechanism for thermoregulation in fish. The discovery of this previously overlooked process has practical implications for aquaculture, offers alternative explanations for behavioural and phenotypic adaptations, will spur future research in fish ecology, and calls for modifications of models concerning climate change impacts on biodiversity in marine and freshwater environments.


Asunto(s)
Regulación de la Temperatura Corporal , Temperatura Corporal , Carpas/fisiología , Animales , Femenino , Masculino , Agua/análisis
8.
Sci Rep ; 6: 26372, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27210072

RESUMEN

Intraspecific variation in vertebral number is taxonomically widespread. Much scientific attention has been directed towards understanding patterns of variation in vertebral number among individuals and between populations, particularly across large spatial scales and in structured environments. However, the relative role of genes, plasticity, selection, and drift as drivers of individual variation and population differentiation remains unknown for most systems. Here, we report on patterns, causes and consequences of variation in vertebral number among and within sympatric subpopulations of pike (Esox lucius). Vertebral number differed among subpopulations, and common garden experiments indicated that this reflected genetic differences. A QST-FST comparison suggested that population differences represented local adaptations driven by divergent selection. Associations with fitness traits further indicated that vertebral counts were influenced both by stabilizing and directional selection within populations. Overall, our study enhances the understanding of adaptive variation, which is critical for the maintenance of intraspecific diversity and species conservation.


Asunto(s)
Esocidae/genética , Columna Vertebral/anatomía & histología , Animales , Esocidae/anatomía & histología , Aptitud Genética , Variación Genética , Selección Genética
9.
PLoS One ; 11(5): e0154488, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27139695

RESUMEN

We tested for local adaption in early life-history traits by performing a reciprocal translocation experiment with approximately 2,500 embryos of pike (Esox lucius) divided in paired split-family batches. The experiment indicated local adaptation in one of the two subpopulations manifested as enhanced hatching success of eggs in the native habitat, both when compared to siblings transferred to a non-native habitat, and when compared to immigrant genotypes from the other subpopulation. Gene-by-environment effects on viability of eggs and larvae were evident in both subpopulations, showing that there existed genetic variation allowing for evolutionary responses to divergent selection, and indicating a capacity for plastic responses to environmental change. Next, we tested for differences in female life-history traits. Results uncovered that females from one population invested more resources into reproduction and also produced more (but smaller) eggs in relation to their body size compared to females from the other population. We suggest that these females have adjusted their reproductive strategies as a counter-adaptation because a high amount of sedimentation on the eggs in that subpopulations spawning habitat might benefit smaller eggs. Collectively, our findings point to adaptive divergence among sympatric subpopulations that are physically separated only for a short period during reproduction and early development-which is rare. These results illustrate how combinations of translocation experiments and field studies of life-history traits might infer about local adaptation and evolutionary divergence among populations. Local adaptations in subdivided populations are important to consider in management and conservation of biodiversity, because they may otherwise be negatively affected by harvesting, supplementation, and reintroduction efforts targeted at endangered populations.


Asunto(s)
Adaptación Fisiológica , Transferencia de Embrión , Esocidae/embriología , Esocidae/fisiología , Simpatría , Animales , Ecosistema , Esocidae/genética , Femenino , Reproducción , Selección Genética
10.
Am Nat ; 186(1): 98-110, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26098342

RESUMEN

Evolutionary theory predicts that different selective regimes may contribute to divergent evolution of body size and growth rate among populations, but most studies have focused on allopatric populations. Here, we studied five sympatric subpopulations of anadromous northern pike (Esox lucius) in the Baltic Sea subjected to allopatric habitats for a short period of their life cycle due to homing behavior. We report differences in adult body size among subpopulations that were in part due to variation in growth rate. Body size of emigrating juveniles also differed among subpopulations, and differences remained when individuals were reared in a common environment, thus indicating evolutionary divergence among subpopulations. Furthermore, a QST-FST comparison indicated that differences had evolved due to divergent selection rather than genetic drift, possibly in response to differences in selective mortality among spawning habitats during the allopatric life stage. Adult and juvenile size were negatively correlated across subpopulations, and reconstruction of growth trajectories of adult fishes suggested that body size differences developed gradually and became accentuated throughout the first years of life. These results represent rare evidence that sympatric subpopulations can evolve differences in key life-history traits despite being subjected to allopatric habitats during only a very short fraction of their life.


Asunto(s)
Tamaño Corporal/genética , Ecosistema , Esocidae/anatomía & histología , Esocidae/crecimiento & desarrollo , Simpatría , Animales , Evolución Biológica , Esocidae/genética , Variación Genética , Selección Genética
11.
Ambio ; 44 Suppl 3: 451-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26022327

RESUMEN

Baltic Sea populations of the northern pike (Esox lucius) have declined since the 1990s, and they face additional challenges due to ongoing climate change. Pike in the Baltic Sea spawn either in coastal bays or in freshwater streams and wetlands. Pike recruited in freshwater have been found to make up about 50 % of coastal pike stocks and to show natal homing, thus limiting gene flow among closely located spawning sites. Due to natal homing, sub-populations appear to be locally adapted to their freshwater recruitment environments. Management actions should therefore not involve mixing of individuals originating from different sub-populations. We offer two suggestions complying with this advice: (i) productivity of extant freshwater spawning populations can be boosted by modifying wetlands such that they promote spawning and recruitment; and (ii) new sub-populations that spawn in brackish water can potentially be created by transferring fry and imprinting them on seemingly suitable spawning environments.


Asunto(s)
Evolución Biológica , Ecología , Cambio Climático , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA