Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 260: 119481, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917930

RESUMEN

An effective approach to producing sophisticated miniaturized and nanoscale materials involves arranging nanomaterials into layered hierarchical frameworks. Nanostructured layered materials are constructed to possess isolated propagation assets, massive surface areas, and envisioned amenities, making them suitable for a variety of established and novel applications. The utilization of various techniques to create nanostructures adorned with metal nanoparticles provides a secure alternative or reinforcement for the existing physicochemical methods. Supported metal nanoparticles are preferred due to their ease of recovery and usage. Researchers have extensively studied the catalytic properties of noble metal nanoparticles using various selective oxidation and hydrogenation procedures. Despite the numerous advantages of metal-based nanoparticles (NPs), their catalytic potential remains incompletely explored. This article examines metal-based nanomaterials that are supported by layers, and provides an analysis of their manufacturing, procedures, and synthesis. This study incorporates both 2D and 3D layered nanomaterials because of their distinctive layered architectures. This review focuses on the most common metal-supported nanocomposites and methodologies used for photocatalytic degradation of organic dyes employing layered nanomaterials. The comprehensive examination of biological and ecological cleaning and treatment techniques discussed in this article has paved the way for the exploration of cutting-edge technologies that can contribute to the establishment of a sustainable future.


Asunto(s)
Nanoestructuras , Catálisis , Nanoestructuras/química , Nanopartículas del Metal/química , Contaminantes Ambientales/química , Metales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Fotólisis
2.
Environ Res ; 242: 117736, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007083

RESUMEN

Environmental contamination is a global challenge that impacts every aspect of ecosystem. The contaminants from anthropogenic or industrial trash continually recirculate into the environment, agricultural land, plants, livestock, and ultimately into humans by way of the food chain. After an increase in human and farmland animal deaths from illnesses due to contaminated drinking water, toxic metal water poisoning has remained a global concern. Diverse environmental and enforcement organisations have attempted to regulate the activities that serve as precursors to these heavy metals which have been proven ineffective. These unnecessary metals have severely hampered most biological processes. The presence of hazardous metals, which are harmful at extremely high levels and have a negative effect on the health of living bodies generally degrades the nutritional value of water. In order to evaluate the heavy metals (Cu, Ni, and Fe) toxicity of groundwater in pri-urban areas, the current study was conducted that have been considered as advance solution to tackle climate change which influence coastal ecosystem. Additionally, the impacts of soil and plant (spinach and brassica) contamination from groundwater were evaluated. The heavy metals were examined in the soil and groundwater samples (Pb, Fe and Ni). While Fe concentrations in water samples were found to be high as 1.978 mg/L as compared to Ni and Cu values low. According to WHO guidelines, the mean value of Fe exceeds the limit value. Similarly, Cu had a higher mean value (0.7 mg/L) in soil samples than other metals (Ni and Fe). In comparison to Ni and Cu, the Fe concentrations in spinach and brassica plants samples are greater, at 17.2 mg/L and 3.22 mg/L, respectively. The possible effects of metal poisoning of groundwater and plants on human health have been assessed using the Hazard Quotient (HQ), Evaluated Daily Intake (EDI), and Incremental Life Time Cancer Risk formulas (ILTCR). When drinking Ni-contaminated water, humans are more at risk of developing cancer (0.0031) than Fe and Cu. Metal concentrations in water and brassica showed substantially more scattered behaviour on the plot and no meaningful relationship, although PCA and masked matrix correlation showed a fair association between Ni and Cu in brassica (r2: 0.46) and Fe and Ni in spinach (r2: 0.31). According to the study's findings, it is anticipated that special management and groundwater monitoring will be needed in the examined area to reduce the health risks related to drinking water that has been contaminated with metals.


Asunto(s)
Agua Potable , Metales Pesados , Neoplasias , Contaminantes del Suelo , Animales , Humanos , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Residuos Industriales/análisis , Suelo , Medición de Riesgo
3.
Chemosphere ; 321: 138077, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758812

RESUMEN

This work successfully utilised eco-friendly green synthesis to produce Ag-TiO2 nanofibers (NFs). As pollution and energy limitations have become global issues, there is an ongoing need to develop more effective catalysts through straightforward and environmentally friendly methods. The Ag-TiO2 nanofibers (NFs) XRD pattern exhibits an anatase TiO2 and FCC crystal structure of Ag nanoparticles. The SEM investigation revealed a nanofiber-like surface morphology. The Ag-TiO2 nanofibers (NFs) exhibits an optical band gap energy is 2.5 eV. Methylene blue (MB), malachite green (MG), Congo red (CR), and crystal violet (CV) dye aqueous solutions were used to evaluate the photocatalytic performance of the synthesized Ag-modified TiO2 nanofibers (NFs) under direct sunlight irradiation. The effects of catalyst size on the efficient breakdown of MB dye were also investigated. The optimum catalyst concentration was found to be at 0.02 mg/mL. At 120 min of direct sunlight, the highest photosynthetic degradation efficiency (DE percentage) of 94% was achieved for MB dye. Ag-TiO2 nanofibers (NFs) have been demonstrated to have exceptional antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus and Gram-negative bacteria E-Coli. Because of these great qualities, it seems likely that the Ag-TiO2 nanofibers (NFs) made could be a great photocatalyst for getting dye pollutants out of wastewater.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Nanofibras/química , Nanopartículas del Metal/química , Plata/química , Titanio/química , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA