Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(34): 8676-8681, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39159009

RESUMEN

Organic charge-transfer complex (CTC) formation has emerged as an effective molecular engineering strategy for achieving the desired optical properties via intermolecular interactions. By synthesizing organic CTCs with carbazole-based electron donors and a 7,7,8,8-tetracyanoquinodimethane acceptor and adopting a molecular linker located remotely from the charge-transfer interface within the donors, we were able to modulate near-infrared absorptive and short-wavelength infrared emissive properties. Structural characterizations performed by using single-crystal X-ray diffraction confirmed that the unique molecular arrangements induced by the steric hindrance from the remotely located linker significantly influence the electronic interactions between the donor and acceptor molecules, resulting in different photophysical properties. Our findings offer an improved understanding of the interplay between molecular packing and optoelectronic properties, providing a foundation for designing advanced materials for optoelectronic applications.

2.
ACS Appl Mater Interfaces ; 16(3): 3853-3861, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207283

RESUMEN

A surface ligand modification of colloidal nanocrystals (NCs) is one of the crucial issues for their practical applications because of the highly insulating nature of native long-chain ligands. Herein, we present straightforward methods for phase transfer and ligand exchange of amphiphilic Ag2S NCs and the fabrication of highly conductive films. S-terminated Ag2S (S-Ag2S) NCs are capped with ionic octylammonium (OctAH+) ligands to compensate for surface anionic charge, S2-, of the NC core. An injection of polar solvent, formamide (FA), into S-Ag2S NCs dispersed in toluene leads to an additional envelopment of the charged S-Ag2S NC core by FA due to electrostatic stabilization, which allows its amphiphilic nature and results in a rapid and effective phase transfer without any ligand addition. Because the solvation by FA involves a dissociation equilibrium of the ionic OctAH+ ligands, controlling a concentration of OctAH+ enables this phase transfer to show reversibility. This underlying chemistry allows S-Ag2S NCs in FA to exhibit a complete ligand exchange to Na+ ligands. The S-Ag2S NCs with Na+ ligands show a close interparticle distance and compatibility for uniformly deposited thin films by a simple spin-coating method. In photoelectrochemical measurements with stacked Ag2S NCs on ITO electrodes, a 3-fold enhanced current response was observed for the ligand passivation of Na+ compared to OctAH+, indicating a significantly enhanced charge transport in the Ag2S NC film by a drastically reduced interparticle distance due to the Na+ ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA