Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 225: 106441, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33065427

RESUMEN

To identify the cause of the phenomenon that rice plants close to the water inlet contain relatively higher radiocesium within a paddy field plot, we conducted a field experiment by establishing experimental channel using polypropylene corrugated sheets, and sampling surface water, paddy soil and rice plants according to the distance from the water inlet in 2014 and 2015. It was found that the 137Cs activity concentrations in both dissolved and particulate forms in paddy surface water presented a declining trend from the water inlet towards the outlet. The 137Cs activity concentration in paddy soil in the harvesting season and those of brown rice and rice straws were highest at 1-2 m from the water inlet. Balance calculation suggests that destination of the lost 137Cs from the surface water was likely to be adsorption of the dissolved form and sedimentation of particulate form onto the soil. The concentration of exchangeable potassium ion in paddy soil was below the recommended standard of 250 mg kg-1 (as K2O in dry soil) near the water inlet at the harvesting period both years.These findings suggested that the possible crucial factors to induce rice plant uptake of radiocesium near the water inlet were either (1) direct absorption of dissolved 137Cs in surface water by rice plants, (2) absorption of 137Cs, which was originally retained in particulate matter and released by ion exchange and/or by organic matter decomposition in combination with (3) loss of soil exchangeable potassium caused due partly to transportation of soil particles with exchangeable potassium by the rapid water flow near the water inlet and/or leaching by ion exchange onto the soil of other cations such as calcium ion flowing into the paddy field. These findings will contribute to providing possible measures for producing safe rice in highly contaminated areas in which agricultural production will resume in the near future. We propose providing a non-planting zone for the area closer than about 5 m from the water intake to avoid the occurrence of high 137Cs concentrations in rice crops.


Asunto(s)
Radioisótopos de Cesio/análisis , Oryza , Monitoreo de Radiación , Contaminantes Radiactivos del Agua/análisis , Bahías , Ingestión de Líquidos , Suelo , Agua
2.
Environ Pollut ; 163: 243-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22266366

RESUMEN

The Great Eastern Japan Earthquake on March 11, 2011, damaged reactor cooling systems at Fukushima Dai-ichi nuclear power plant. The subsequent venting operation and hydrogen explosion resulted in a large radioactive nuclide emission from reactor containers into the environment. Here, we collected environmental samples such as soil, plant species, and water on April 10, 2011, in front of the power plant main gate as well as 35 km away in Iitate village, and observed gamma-rays with a Ge(Li) semiconductor detector. We observed activation products ((239)Np and (59)Fe) and fission products ((131)I, (134)Cs ((133)Cs), (137)Cs, (110m)Ag ((109)Ag), (132)Te, (132)I, (140)Ba, (140)La, (91)Sr, (91)Y, (95)Zr, and (95)Nb). (239)Np is the parent nuclide of (239)Pu; (59)Fe are presumably activation products of (58)Fe obtained by corrosion of cooling pipes. The results show that these activation and fission products, diffused within a month of the accident.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Plantas de Energía Nuclear , Monitoreo de Radiación , Liberación de Radiactividad Peligrosa , Japón , Fisión Nuclear , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA