Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Oncol ; 13(2): 290-306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30422399

RESUMEN

In malignant transformation, cellular stress-response pathways are dynamically mobilized to counterbalance oncogenic activity, keeping cancer cells viable. Therapeutic disruption of this vulnerable homeostasis might change the outcome of many human cancers, particularly those for which no effective therapy is available. Here, we report the use of fibroblast growth factor 2 (FGF2) to demonstrate that further mitogenic activation disrupts cellular homeostasis and strongly sensitizes cancer cells to stress-targeted therapeutic inhibitors. We show that FGF2 enhanced replication and proteotoxic stresses in a K-Ras-driven murine cancer cell model, and combinations of FGF2 and proteasome or DNA damage response-checkpoint inhibitors triggered cell death. CRISPR/Cas9-mediated K-Ras depletion suppressed the malignant phenotype and prevented these synergic toxicities in these murine cells. Moreover, in a panel of human Ewing's sarcoma family tumor cells, sublethal concentrations of bortezomib (proteasome inhibitor) or VE-821 (ATR inhibitor) induced cell death when combined with FGF2. Sustained MAPK-ERK1/2 overactivation induced by FGF2 appears to underlie these synthetic lethalities, as late pharmacological inhibition of this pathway restored cell homeostasis and prevented these described synergies. Our results highlight how mitotic signaling pathways which are frequently overridden in malignant transformation might be exploited to disrupt the robustness of cancer cells, ultimately sensitizing them to stress-targeted therapies. This approach provides a new therapeutic rationale for human cancers, with important implications for tumors still lacking effective treatment, and for those that frequently relapse after treatment with available therapies.


Asunto(s)
Antineoplásicos/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Estrés Fisiológico , Animales , Bortezomib/farmacología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
2.
Mol Oncol, v. 13, n.2, p. 290-306, dez. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2670

RESUMEN

In malignant transformation, cellular stress-response pathways are dynami-cally mobilized to counterbalance oncogenic activity, keeping cancer cellsviable. Therapeutic disruption of this vulnerable homeostasis might changethe outcome of many human cancers, particularly those for which no effec-tive therapy is available. Here, we report the use of fibroblast growth factor2 (FGF2) to demonstrate that further mitogenic activation disrupts cellularhomeostasis and strongly sensitizes cancer cells to stress-targeted therapeu-tic inhibitors. We show that FGF2 enhanced replication and proteotoxicstresses in a K-Ras-driven murine cancer cell model, and combinations ofFGF2 and proteasome or DNA damage response-checkpoint inhibitorstriggered cell death. CRISPR/Cas9-mediated K-Ras depletion suppressedthe malignant phenotype and prevented these synergic toxicities in thesemurine cells. Moreover, in a panel of human Ewing’s sarcoma family tumorcells, sublethal concentrations of bortezomib (proteasome inhibitor) or VE-821 (ATR inhibitor) induced cell death when combined with FGF2. Sus-tained MAPK-ERK1/2 overactivation induced by FGF2 appears to under-lie these synthetic lethalities, as late pharmacological inhibition of thispathway restored cell homeostasis and prevented these described synergies.Our results highlight how mitotic signaling pathways which are frequentlyoverridden in malignant transformation might be exploited to disrupt therobustness of cancer cells, ultimately sensitizing them to stress-targeted ther-apies. This approach provides a new therapeutic rationale for human can-cers, with important implications for tumors still lacking effectivetreatment, and for those that frequently relapse after treatment with avail-able therapies.

3.
Methods Mol Biol ; 1636: 455-474, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730496

RESUMEN

We present in this article a methodology for designing kinetic models of molecular signaling networks, which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1 adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry and wet lab teams worked together along the whole modeling process.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Transducción de Señal , Proteínas ras/metabolismo , Algoritmos , Animales , Biomarcadores , Línea Celular , Biología Computacional/métodos , Ensayo de Inmunoadsorción Enzimática , Cinética , Ratones , Fosforilación , Reproducibilidad de los Resultados
4.
PLoS One ; 10(3): e0120896, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25775131

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Telómero/metabolismo , Trypanosoma cruzi/metabolismo , Transporte Activo de Núcleo Celular , Modelos Teóricos , NAD/metabolismo , Unión Proteica , Transporte de Proteínas , Telómero/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA