Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neotrop Entomol ; 50(1): 121-128, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33025569

RESUMEN

The "cotton boll weevil" (Anthonomus grandis Boheman) is a key pest in America whose larval stage develops within the cotton flower bud. During its development, the larva uses the flower bud as food and as a shelter from predators. This behavior limits the effective control through conventional insecticide applications and biocontrol techniques. Increasing genetic information from insects has allowed the development of new control technologies based on the use of RNA interference (RNAi) to design orally delivered double-stranded RNA (dsRNA) strategies. In this study, we evaluated the effect of continuous oral administration of six specific dsRNA in order to identify an effective target gene for RNAi-mediated control of cotton boll weevil. First, six selected A. grandis gene fragments were amplified and cloned to perform in vivo synthesis of the specific dsRNA, and subsequently, larvae and adults were fed with this dsRNA for 2 weeks. Larvae mortality ranged from 40 to 60% depending on the targeted gene sequence. Indeed, α-amylase and cytochrome p450 dsRNAs were the most effective. Oral administration in adults caused smaller but still significant death rates (15-30%). Thus, the results demonstrated RNAi responses depend on life stages and target genes. The dsRNA ingestion was capable of providing knockdown mRNA levels in cotton boll weevil midgut and this effect was significantly higher in the larval stage. In this study, we present a new report of silencing of midgut genes in A. grandis larva induced by continuously feeding with dsRNA. This potential new tool should be further evaluated in cotton boll weevil control strategies.


Asunto(s)
Técnicas de Silenciamiento del Gen , Control de Insectos/métodos , ARN Bicatenario , Gorgojos , Administración Oral , Animales , Sistema Digestivo , Gossypium , Interferencia de ARN
2.
Virus Genes ; 56(3): 401-405, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32030574

RESUMEN

The fall armyworm, Spodoptera frugiperda (JE Smith) is a key pest in the Americas. Control strategies are mainly carried out by use of chemical insecticides and transgenic crops expressing Bacillus thuringiensis toxins. In the last years, resistance of S. frugiperda populations to transgenic corn was reported in different Latin American countries. The baculovirus Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) is a pathogenic agent for the fall armyworm and a potential alternative for its control in integrated pest management strategies. In this work, we analyze some characteristics of two baculovirus isolates collected from maize (SfMNPV-M) and cotton (SfMNPV-C) fields from Argentina. The isolates were compared by restriction enzymes patterns and the analysis reveals the presence of genotypic variants in the SfMNPV-M isolate. We confirmed a deletion by sequencing fragments encompassing egt gene and most part of its contiguous gene (orf A) in a SfMNVP-M genotypic variant. Additionally, we estimated the 50% lethal dose and median survival time of each isolate in bioassays with S. frugiperda larvae.


Asunto(s)
Infecciones por Virus ADN/virología , Variación Genética , Nucleopoliedrovirus/genética , Argentina , Genoma Viral , Genotipo , Haplotipos , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/aislamiento & purificación , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA