Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19638, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179788

RESUMEN

Thick-coal-seam with complex structures and thick-hard roof in the initial mining phase pose various challenges, including a long weighting interval, strong rock pressure, poor top coal caving performance (TCCP), and significant coal loss. These problems directly affect the safety and efficiency of the mining operations. This study employs the principles of elastic thin plates and ellipsoidal bodies to unravel the formation mechanism of strong rock pressure in thick-hard roof and the influence of parting on the TCCP. In addition, a hydraulic fracturing technique is proposed for safe-efficient recovery during the initial mining phase. The reliability of this technique is verified through numerical simulations and field experiments. The research findings reveal the following. (1) The primary causes of strong rock pressure in the mining face are attributed to a long weighting interval and wide collapse range of the main roof, and the weighting interval is primarily influenced by the thickness and tensile strength of the main roof. (2)The key factor affecting the TCCP is the cantilever beam structure formed by the fracture of the thick-hard parting, as it intersects the ellipsoidal body during coal caving. The simultaneous fracturing of both the top coal and roof can reduce the weighting interval on the working face. This process effectively decreased the strength of the thick-hard parting within the top coal, while simultaneously enhancing its load strength and eliminating the cantilever structure resulting from the parting fracture. It not only reduces the first weighting intensity but also promotes the early and proper coal release, thereby enhancing the TCCP and ensuring safe-efficient mining during the initial mining phase. (3) Aiming at the difference in the strengths of the top coal and roof, a graded hydraulic fracturing technique and system were proposed. Fracturing boreholes with a diameter of 60 mm, spacing of 10 m, and height of 20.85 m, which can economically and effectively ensure the fracturing results. Field applications have demonstrated that fractured coal and rocks in fracturing areas exhibit well-developed fractures. During the initial mining phase, the weighting interval in the working face was reduced by 20 m, resulting in a decrease in the overburden pressure and 26.9% reduction in the lumpiness of the top coal. Additionally, the recovery rate increased by 31.19%.

2.
Materials (Basel) ; 17(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473598

RESUMEN

Rock fracture is a macroscopic fracturing process resulting from the initiation and propagation of microscopic cracks. Therefore, it is crucial to comprehend the damage and fracture mechanism of rock under ultrasonic vibration by investigating the evolutionary pattern of the meso-pore fracture structure in response to high-frequency vibrational loads, as explored in this study. Standard red sandstone samples with a diameter of 50 mm and height of 100 mm were subjected to ultrasonic high-frequency vibration tests. NMR and CT scans were conducted on the rock samples at different stages of ultrasonic vibration excitation to obtain the corresponding transverse relaxation time (T2) spectra and CT scan images for each layer. The NMR test results revealed that smaller pores formed within the rock under high-frequency vibration loads, with a noticeable expansion observed in micropores. Three-dimensional reconstruction analysis based on two-dimensional CT images demonstrated an increase in pore count by 145.56%, 122.67%, and 98.87%, respectively, for the upper, middle, and lower parts of the rock after 120 s of ultrasonic vibration excitation; furthermore, the maximum pore volume increased by 239.42%, 109.16%, and 18.99%, respectively, for these regions during this period as well. These findings contribute towards a deeper understanding regarding the mechanisms underlying rock fragmentation when exposed to high-frequency vibrational loads.

3.
Childs Nerv Syst ; 38(11): 2113-2118, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35972535

RESUMEN

OBJECTIVE: The aim of this study is to describe MR imaging appearances of the fetal lumbar spine in vivo at different gestational ages (GAs). METHODS: This retrospective study was approved by the Third Affiliated Hospital of Zhengzhou University. We collected MR images and clinical data of 93 fetuses in our hospital. All the MR images were obtained by 3-T MR. All had the mid-sagittal plane of steady state free precession sequence (Trufi) of the lumbar spine, which could show the lumbar vertebra and conus medullaris (CM). Regression analysis was made between GA and heights of lumbar vertebral body ossification center (LVBOC), lengths of LVBOC, and heights of intervertebral gap (IVG). RESULTS: There were good linear correlations between the heights of LVBOC and GA (P < 0.001), lengths of LVBOC and GA (P < 0.001), and heights of IVG and GA (P < 0.001). CONCLUSION: We showed the different development of each LVBOC and IVG which caused the difference of the shape of LVBOC and IVG.


Asunto(s)
Feto , Vértebras Lumbares , Humanos , Estudios Retrospectivos , Vértebras Lumbares/diagnóstico por imagen , Feto/diagnóstico por imagen , Región Lumbosacra , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA