Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 844622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299950

RESUMEN

Orchids constitute approximately 10% of flowering plant species. However, only about 10 orchid genomes have been published. Metabolites are the main way through which orchids respond to their environment. Dendrobium nobile, belonging to Dendrobium, the second largest genus in Orchidaceae, has high ornamental, medicinal, and ecological value. D. nobile is the source of many popular horticultural varieties. Among the Dendrobium species, D. nobile has the highest amount of dendrobine, which is regarded as one of the criteria for evaluating medicinal quality. Due to lack of data and analysis at the genomic level, the biosynthesis pathways of dendrobine and other related medicinal ingredients in D. nobile are unknown. In this paper, we report a chromosome-scale reference genome of D. nobile to facilitate the investigation of its genomic characteristics for comparison with other Dendrobium species. The assembled genome size of D. nobile was 1.19 Gb. Of the sequences, 99.45% were anchored to 19 chromosomes. Furthermore, we identified differences in gene number and gene expression patterns compared with two other Dendrobium species by integrating whole-genome sequencing and transcriptomic analysis [e.g., genes in the polysaccharide biosynthesis pathway and upstream of the alkaloid (dendrobine) biosynthesis pathway]. Differences in the TPS and CYP450 gene families were also found among orchid species. All the above differences might contribute to the species-specific medicinal ingredient biosynthesis pathways. The metabolic pathway-related analysis will provide further insight into orchid responses to the environment. Additionally, the reference genome will provide important insights for further molecular elucidation of the medicinal active ingredients of Dendrobium and enhance the understanding of orchid evolution.

2.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200389

RESUMEN

Self-incompatibility (SI) is a type of reproductive barrier within plant species and is one of the mechanisms for the formation and maintenance of the high diversity and adaptation of angiosperm species. Approximately 40% of flowering plants are SI species, while only 10% of orchid species are self-incompatible. Intriguingly, as one of the largest genera in Orchidaceae, 72% of Dendrobium species are self-incompatible, accounting for nearly half of the reported SI species in orchids, suggesting that SI contributes to the high diversity of orchid species. However, few studies investigating SI in Dendrobium have been published. This study aimed to address the following questions: (1) How many SI phenotypes are in Dendrobium, and what are they? (2) What is their distribution pattern in the Dendrobium phylogenetic tree? We investigated the flowering time, the capsule set rate, and the pollen tube growth from the representative species of Dendrobium after artificial pollination and analysed their distribution in the Asian Dendrobium clade phylogenetic tree. The number of SI phenotypes exceeded our expectations. The SI type of Dendrobium chrysanthum was the primary type in the Dendrobium SI species. We speculate that there are many different SI determinants in Dendrobium that have evolved recently and might be specific to Dendrobium or Orchidaceae. Overall, this work provides new insights and a comprehensive understanding of Dendrobium SI.


Asunto(s)
Evolución Biológica , Dendrobium/clasificación , Dendrobium/genética , Autoincompatibilidad en las Plantas con Flores/genética , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Fenotipo , Filogenia , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Polinización , Semillas/genética , Factores de Tiempo
3.
J Org Chem ; 83(17): 9958-9967, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29993245

RESUMEN

A new and facile AgSbF6-mediated protocol for the construction of C-4 thiolated or selenylated isoquinolin-1(2 H)-ones via a radical pathway was established. This reaction proceeded efficiently with excellent regioselectivity, a broad substrate scope, and good functional group tolerance. A radical reaction mechanism involving thiyl radicals as key intermediates is proposed for the present transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA