Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Nutr ESPEN ; 63: 491-500, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39018242

RESUMEN

BACKGROUND & AIMS: Excess sucrose intake induces metabolic syndrome. In human, abnormal lipids metabolism like obesity, hyperlipidemia and fatty liver are induced. However, excess sucrose causes different phenotypes in different species. Based on our previous study, excess sucrose induced fatty liver and hyperlipidemia in rats. The phenotypes and mechanism of abnormal lipid metabolism in mice is unclear. We investigated the different phenotypes in 5 strains of mice and the relationship between gut microbiome and abnormal lipid metabolism in C57BL/6N mice. METHODS: We examined the effect of a high sucrose diet in 5 different strains of mice. Besides, to find out the relationship between gut microbiome and metabolic disorder induced by excess sucrose, C57BL/6N mice were fed with a high sucrose diet with or without antibiotics cocktail. RESULTS: A high sucrose diet induced obesity and fatty liver in inbred mice, whereas did not induce hyperlipidemia in all strains of mice. Moreover, a high sucrose diet changed the composition of gut microbiota in C57BL/6N mice. Antibiotics treatment alleviated the abnormal lipid metabolism induced by high sucrose diet by changing the composition of gut short chain fatty acids. CONCLUSIONS: These results indicates that the phenotypes of metabolic syndrome are influenced by genetic factors. Furthermore, the dysbiosis of gut microbiome caused by excess sucrose may contribute to the development of abnormal lipid metabolism via its metabolites.

2.
J Labelled Comp Radiopharm ; 64(10): 403-416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34243219

RESUMEN

Cinnamic acids are widely distributed in plants, including crops for human use, and exhibit a variety of activities that are beneficial to human health. They also occupy a pivotal position in the biosynthesis of phenylpropanoids such as lignins, anthocyanins, flavonoids, and coumarins. In this context, deuterium-labeled cinnamic acids have been used as tracers and internal standards in food and medicinal chemistry as well as plant biochemistry. Therefore, a concise synthesis of deuterium-labeled cinnamic acids would be highly desirable. In this study, we synthesized deuterium-labeled cinnamic acids using readily available deuterium sources. We also investigated a hydrogen-deuterium exchange reaction in an ethanol-d1 /Et3 N system. This method can introduce deuterium atoms at the ortho and para positions of the phenolic hydroxy groups as well as at the C-2 position of alkyl cinnamates and is applicable to various phenolic compounds. Using the synthesized labeled compounds, we demonstrated that the benzenoid volatiles, such as 4-methoxybenzaldehyde, in the scent of the flowers of the Japanese loquat Eriobotrya japonica are biosynthesized from phenylalanine via cinnamic and 4-coumaric acids. This study provides easy access to a variety of deuterium-labeled (poly)phenols, as well as to useful tools for studies of the metabolism of cinnamic acids in living systems.


Asunto(s)
Cinamatos/química , Deuterio/química , Eriobotrya/química , Compuestos Orgánicos Volátiles/metabolismo , Eriobotrya/metabolismo , Flores/química , Flores/metabolismo , Fenoles/química , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA