Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 79(1): 10, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34905112

RESUMEN

Currently, over 190 species in family Vibrionaceae, including not-yet-cultured taxa, have been described and classified into over nine genera, in which the number of species has doubled compared to the previous vibrio evolutionary update (Vibrio Clade 2.0) (Sawabe et al. 2014). In this study, "Vibrio Clade 3.0," the second update of the molecular phylogenetic analysis was performed based on nucleotide sequences of eight housekeeping genes (8-HKGs) retrieved from genome sequences, including 22 newly determined genomes. A total of 51 distinct clades were observed, of which 21 clades are newly described. We further evaluated the delineation powers of the clade classification based on nucleotide sequences of 34 single-copy genes and 11 ribosomal protein genes (11-RPGs) retrieved from core-genome sequences; however, the delineation power of 8-HKGs is still high and that gene set can be reliably used for the classification and identification of Vibrionaceae. Furthermore, the 11-RPGs set proved to be useful in identifying uncultured species among metagenome-assembled genome (MAG) and/or single-cell genome-assembled genome (SAG) pools. This study expands the awareness of the diversity and evolutionary history of the family Vibrionaceae and accelerates the taxonomic applications in classifying as not-yet-cultured taxa among MAGs and SAGs.


Asunto(s)
Vibrio , Vibrionaceae , Secuencia de Bases , Genoma Bacteriano , Filogenia , Análisis de Secuencia de ADN , Vibrio/genética , Vibrionaceae/genética
2.
PLoS One ; 15(12): e0241366, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33301463

RESUMEN

A novel bacterium, strain EPR55-1T, was isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The cells were motile rods. Growth was observed at temperatures between 50 and 60°C (optimum, 60°C), at pH values between 5.4 and 8.6 (optimum, pH 6.6) and in the presence of 2.4-3.2% (w/v) NaCl (optimum, 2.4%). The isolate used molecular hydrogen as its sole electron donor, carbon dioxide as its sole carbon source, ammonium as its sole nitrogen source, and thiosulfate, sulfite (0.01 to 0.001%, w/v) or elemental sulfur as its sole sulfur source. Nitrate, nitrous oxide (33%, v/v), thiosulfate, molecular oxygen (0.1%, v/v) or elemental sulfur could serve as the sole electron acceptor to support growth. Phylogenetic analyses based on both 16S rRNA gene sequences and whole genome sequences indicated that strain EPR55-1T belonged to the family Nitratiruptoraceae of the class "Campylobacteria", but it had the distinct phylogenetic relationship with the genus Nitratiruptor. On the basis of the physiological and molecular characteristics of the isolate, the name Nitrosophilus alvini gen. nov. sp. nov. is proposed, with EPR55-1T as the type strain (= JCM 32893T = KCTC 15925T). In addition, it is shown that "Nitratiruptor labii" should be transferred to the genus Nitrtosophilus; the name Nitrosophilus labii comb. nov. (JCM 34002T = DSM 111345T) is proposed for this organism. Furthermore, 16S rRNA gene-based and genome-based analyses showed that Cetia pacifica is phylogenetically associated with Caminibacter species. We therefore propose the reclassification of Cetia pacifica as Caminibacter pacificus comb. nov. (DSM 27783T = JCM 19563T). Additionally, AAI thresholds for genus classification and the reclassification of subordinate taxa within "Campylobacteria" are also evaluated, based on the analyses using publicly available genomes of all the campylobacterial species.


Asunto(s)
Epsilonproteobacteria/clasificación , Respiraderos Hidrotermales/microbiología , ADN Bacteriano/genética , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Genoma Bacteriano , Hidrógeno/metabolismo , Oxidación-Reducción , Océano Pacífico , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Especificidad de la Especie , Terminología como Asunto
3.
Breast Cancer Res Treat ; 139(3): 731-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23780684

RESUMEN

Aromatase inhibitors (AIs) have been reported to exert their antiproliferative effects in postmenopausal women with hormone receptor-positive breast cancer not only by reducing estrogen production but also by unmasking the inhibitory effects of androgens such as testosterone (TS) and dihydrotestosterone (DHT). However, the role of androgens in AI-resistance mechanisms is not sufficiently understood. 5α-Androstane-3ß,17ß-diol (3ß-diol) generated from DHT by 3ß-hydroxysteroid dehydrogenase type 1 (HSD3B1) shows androgenic and substantial estrogenic activities, representing a potential mechanism of AI resistance. Estrogen response element (ERE)-green fluorescent protein (GFP)-transfected MCF-7 breast cancer cells (E10 cells) were cultured for 3 months under steroid-depleted, TS-supplemented conditions. Among the surviving cells, two stable variants showing androgen metabolite-dependent ER activity were selected by monitoring GFP expression. We investigated the process of adaptation to androgen-abundant conditions and the role of androgens in AI-resistance mechanisms in these variant cell lines. The variant cell lines showed increased growth and induction of estrogen-responsive genes rather than androgen-responsive genes after stimulation with androgens or 3ß-diol. Further analysis suggested that increased expression of HSD3B1 and reduced expression of androgen receptor (AR) promoted adaptation to androgen-abundant conditions, as indicated by the increased conversion of DHT into 3ß-diol by HSD3B1 and AR signal reduction. Furthermore, in parental E10 cells, ectopic expression of HSD3B1 or inhibition of AR resulted in adaptation to androgen-abundant conditions. Coculture with stromal cells to mimic local estrogen production from androgens reduced cell sensitivity to AIs compared with parental E10 cells. These results suggest that increased expression of HSD3B1 and reduced expression of AR might reduce the sensitivity to AIs as demonstrated by enhanced androgen metabolite-induced ER activation and growth mechanisms. Androgen metabolite-dependent growth of breast cancer cells may therefore play a role in AI-resistance.


Asunto(s)
Andrógenos/metabolismo , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Receptores de Estrógenos/metabolismo , Androstano-3,17-diol/metabolismo , Androstano-3,17-diol/farmacología , Neoplasias de la Mama/metabolismo , Dihidrotestosterona/metabolismo , Dihidrotestosterona/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Letrozol , Células MCF-7/efectos de los fármacos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nitrilos/farmacología , Progesterona Reductasa/genética , Progesterona Reductasa/metabolismo , Receptores Androgénicos/metabolismo , Elementos de Respuesta/genética , Transducción de Señal , Esteroide Isomerasas/genética , Esteroide Isomerasas/metabolismo , Testosterona/metabolismo , Testosterona/farmacología , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA