Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cells Int ; 2024: 2187392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184549

RESUMEN

The scientific field concerned with the study of regeneration has developed rapidly in recent years. Stem cell therapy is a highly promising therapeutic modality for repairing tissue defects; however, several limitations exist, such as cytotoxicity, potential immune rejection, and ethical issues. Exosomes secreted by stem cells are cell-specific secreted vesicles that play a regulatory role in many biological functions in the human body; they not only have a series of functional roles of stem cells and exert the expected therapeutic effects, but they can also overcome the mass limitations of stem cells and are thus considered in the research as an alternative treatment strategy for stem cells. Since dental stem cell-derived exosomes (DSC-Exos) are easy to acquire and present modulating effects in several fields, including neurovascular regeneration and craniofacial soft and hard tissue regeneration processes, they are served as an emerging cell-free therapeutic strategy in various systematic diseases. There is a growing body of research on various types of DSC-Exos; however, they lack systematic elaboration and tabular summarization. Therefore, this review presents the isolation, characterization, and phenotypes of DSC-Exos and focuses on their current status of functions and mechanisms, as well as the multiple challenges prior to clinical applications.

2.
Stem Cell Res Ther ; 14(1): 222, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633928

RESUMEN

Mesenchymal stem cells (MSCs) are widely used in cell therapy, tissue engineering, and regenerative medicine because of their self-renewal, pluripotency, and immunomodulatory properties. The microenvironment in which MSCs are located significantly affects their physiological functions. The microenvironment directly or indirectly affects cell behavior through biophysical, biochemical, or other means. Among them, the mechanical signals provided to MSCs by the microenvironment have a particularly pronounced effect on their physiological functions and can affect osteogenic differentiation, chondrogenic differentiation, and senescence in MSCs. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important in transducing mechanical signals, and these channels are widely distributed in sites such as skin, bladder, kidney, lung, sensory neurons, and dorsal root ganglia. Although there have been numerous studies on Piezo channels in MSCs in recent years, the function of Piezo channels in MSCs is still not well understood, and there has been no summary of their relationship to illustrate which physiological functions of MSCs are affected by Piezo channels and the possible underlying mechanisms. Therefore, based on the members, structures, and functions of Piezo ion channels and the fundamental information of MSCs, this paper focused on summarizing the advances in Piezo channels in MSCs from various tissue sources to provide new ideas for future research and practical applications of Piezo channels and MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Condrogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA