Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069373

RESUMEN

Cell sheet (CS) engineering using mesenchymal stromal cells (MSC) draws significant interest for regenerative medicine and this approach translates to clinical use for numerous indications. However, little is known of factors that define the timing of CS assembly from primary cultures. This aspect is important for planning CS delivery in autologous and allogeneic modes of use. We used a comparative in vitro approach with primary donors' (n = 14) adipose-derived MSCs and evaluated the impact of healthy subject's sex, MSC culture features (population doubling time and lag-phase), and extracellular matrix (ECM) composition along with factors related to connective tissue formations (α-SMA and FAP-α) on CS assembly duration. Using qualitative and quantitative analysis methods, we found that, in seeded MSCs, high contents of collagen I and collagen IV had a direct correlation with longer CS assembly duration. We found that short lag-phase cultures faster turned to a ready-to-use CS, while age, sex, fibronectin, laminin, α-SMA, and FAP-α failed to provide a significant correlation with the timing of assembly. In detachable CSs, FAP-α was negatively correlated with the duration of assembly, suggesting that its concentration rose over time and contributed to MSC activation, transitioning to α-SMA-positive myofibroblasts and ECM turnover. Preliminary data on cell density and collagen I deposition suggested that the TGF-ß1 signaling axis is of pivotal importance for ECM composition and construct maturation.


Asunto(s)
Matriz Extracelular , Células Madre Mesenquimatosas , Humanos , Células Cultivadas , Matriz Extracelular/fisiología , Colágeno Tipo I , Colágeno Tipo IV , Diferenciación Celular
2.
Biomedicines ; 9(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572378

RESUMEN

Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.

3.
Front Cell Dev Biol ; 9: 616893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718358

RESUMEN

Besides certain exceptions, healing of most tissues in the human body occurs via formation of scar tissue, rather than restoration of lost structures. After extensive acute injuries, this phenomenon substantially limits the possibility of lost function recovery and, in case of chronic injury, it leads to pathological remodeling of organs affected. Managing outcomes of damaged tissue repair is one of the main objectives of regenerative medicine. The first priority for reaching it is comparative investigation of mechanisms responsible for complete restoration of damaged tissues and mechanisms of scarring. However, human body tissues that undergo complete scar-free healing are scarce. The endometrium is a unique mucous membrane in the human body that heals without scarring after various injuries, as well as during each menstrual cycle (i.e., up to 400 times during a woman's life). We hypothesized that absence of scarring during endometrial healing may be associated with tissue-specific features of its stromal cells (SCs) or their microenvironment, since SCs transform into myofibroblasts-the main effector link of scarring. We found that during healing of the endometrium, soluble factors are formed that inhibit the transition of SCs into myofibroblasts. Without influence of these factors, the SCs of the endometrium undergo transformation into myofibroblasts after transforming growth factor ß1 (TGF-ß1) treatment as well as the SCs from tissues that heal by scarring-skin or fat. However, unlike the latter, endometrial SCs organize extracellular matrix (ECM) in a specific way and are not prone to formation of bulky connective tissue structures. Thus, we may suggest that tissue-specific features of endometrial SCs along with effects of soluble factors secreted in utero during menstruation ensure scar-free healing of human endometrium.

4.
Neurochem Res ; 46(3): 550-563, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389385

RESUMEN

Prenatal hypoxia is among leading causes of progressive brain pathologies in postnatal life. This study aimed to analyze the characteristics of the hippocampal glutamatergic system and behavior of rats in early (2 weeks), adult (3 months) and advanced (18 months) postnatal ontogenesis after exposure to prenatal severe hypoxia (PSH, 180 Torr, 5% O2, 3 h) during the critical period in the formation of the hippocampus (days 14-16 of gestation). We have shown an age-dependent progressive decrease in the hippocampal glutamate levels, a decrease of the neuronal cell number in the CA1 hippocampal region, as well as impairment of spatial long-term memory in the Morris water navigation task. The gradual decrease of glutamate was accompanied by decreased expression of the genes that mediate glutamate metabolism and recycling in the hippocampus. That deficiency apparently correlated with an increase of the metabotropic glutamate receptor type 1 (mGluR1) and synaptophysin expression. Generation of the lipid peroxidation products in the hippocampus of adult rats subjected to prenatal severe hypoxia (PSH rats) was not increased compared to the control animals when tested in a model of glutamate excitotoxicity induced by severe hypoxia. This demonstrates that excessive glutamate sensitivity in PSH rats does not compensate for glutamate deficiency. Our results show a significant contribution of the glutamate system dysfunction to age-associated decrease of this mediator, cognitive decline, and early neuronal loss in PSH rats.


Asunto(s)
Envejecimiento Prematuro/fisiopatología , Región CA1 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Hipoxia/fisiopatología , Envejecimiento Prematuro/etiología , Envejecimiento Prematuro/patología , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Animales Recién Nacidos , Región CA1 Hipocampal/patología , Femenino , Hipoxia/complicaciones , Hipoxia/patología , Masculino , Prueba del Laberinto Acuático de Morris/fisiología , Embarazo , Ratas , Receptores AMPA/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
5.
Front Cell Dev Biol ; 8: 555378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072743

RESUMEN

Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment in vitro and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components in vitro and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.

6.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759725

RESUMEN

We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.


Asunto(s)
Fibrosis/genética , Trasplante de Células Madre Mesenquimatosas , Úlcera por Presión/terapia , Cicatrización de Heridas/genética , Tejido Adiposo/trasplante , Animales , Cicatriz/genética , Cicatriz/patología , Fibrosis/patología , Fibrosis/terapia , Tejido de Granulación/metabolismo , Tejido de Granulación/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Úlcera por Presión/genética , Úlcera por Presión/patología , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-32733378

RESUMEN

The potential rapid advance of regenerative medicine was obstructed by findings that stimulation of human body regeneration is a much tougher mission than expected after the first cultures of stem and progenitor cells were established. In this mini review, we focus on the ambiguous role of growth factors in regeneration, discuss their evolutionary importance, and highlight them as the "cure and the cause" for successful or failed attempts to drive human body regeneration. We draw the reader's attention to evolutionary changes that occurred in growth factors and their receptor tyrosine kinases (RTKs) and how they established and shaped response to injury in metazoans. Discussing the well-known pleiotropy of growth factors, we propose an evolutionary rationale for their functioning in this specific way and focus on growth factors and RTKs as an amazing system that defines the multicellular nature of animals and highlight their participation in regeneration. We pinpoint potential bottlenecks in their application for human tissue regeneration and show their role in fibrosis/regeneration balance. This communication invites the reader to re-evaluate the functions of growth factors as keepers of natively existing communications between elements of tissue, which makes them a fundamental component of a successful regenerative strategy. Finally, we draw attention to the epigenetic landscape that may facilitate or block regeneration and give a brief insight into how it may define the outcome of injury.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Regeneración , Medicina Regenerativa , Epigénesis Genética , Humanos , Transducción de Señal
8.
J Mol Neurosci ; 70(5): 635-646, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31865524

RESUMEN

The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.


Asunto(s)
Apoptosis , Hipocampo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Neuronas/metabolismo , Vía de Pentosa Fosfato , Topotecan/farmacología , Animales , Regulación hacia Abajo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratas , Ratas Wistar , Topotecan/uso terapéutico
9.
Dev Neurosci ; 42(2-4): 145-158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33440383

RESUMEN

INTRODUCTION: Prenatal hypoxia is a risk factor for the development of numerous neurological disorders. It is known that the maternal stress response to hypoxia determines the epigenetic impairment of the perinatal expression of glucocorticoid receptors (GR) in the hippocampus of the progeny, but so far no detailed study of how this affects the functional state of the glucocorticoid system during further ontogenesis has been performed. OBJECTIVE: The goal of the present study was to examine the long-term effects of the prenatal hypoxia on the functioning of the glucocorticoid system throughout life. METHODS: Prenatal severe hypobaric hypoxia (PSH) was induced in the critical period of embryonic hippocampal formation on days 14-16 of gestation in a hypobaric chamber (180 Torr, 5% oxygen, 3 h). The activity of central (hippocampus) and peripheral (liver) components of the glucocorticoid system was assessed in 1-day-old (newborn), 2-week-old (juvenile), 3-month-old (adult), and 18-month-old (aged) male rats. RESULTS: The PSH resulted in continuously elevated baseline corticosterone blood levels in the adult and aged rats. The chronic elevation of the corticosterone levels was accompanied by a progressive deficit of the GR expression in the liver, increased hepatic glycogen content, dysregulated glucose-6-phosphatase activity, and eventually hypoglycemia. Elevated corticosterone appears to result from the impairment of the mechanisms of glucocorticoid negative feedback since a substantial decrease in both the total number of GR and their nuclear localization was observed already in the hippocampus of newborn rat pups and persisted throughout life. Corresponding stable hippocampal downregulation of GR-dependent genes was observed as well. Suppression of the maternal glucocorticoid stress response to hypoxia by metyrapone injection to pregnant rats prior to each hypoxic challenge considerably reduced corticosterone over-response to hypoxia and prevented reduced hippocampal GR. CONCLUSIONS: Our findings demonstrate that in progeny a deficit of hippocampal GR resulting from maternal glucocorticoid response to hypoxia remains stable throughout life and is accompanied by severe disturbances of baseline glucocorticoid levels and its peripheral reception. Negative consequences of PSH can be prevented by injection with an inhibitor of corticosterone synthesis (metyrapone) to pregnant females undergoing hypoxia.


Asunto(s)
Corticosterona/sangre , Hipocampo/metabolismo , Hipoxia/complicaciones , Hígado/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Femenino , Masculino , Embarazo , Ratas
10.
Stem Cell Res Ther ; 10(1): 342, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31753023

RESUMEN

BACKGROUND: Injury of stem cell niches may disturb tissue homeostasis and regeneration coordinated by specific niche components. Yet, the mechanisms of stem cell niche restoration remain poorly understood. Herein, we examined the role of mesenchymal stromal cells (MSCs) as pivotal regulators of stem cell niche recovery focusing on the effects of their secretome. METHODS: The spermatogonial stem cell (SSC) niche was selected as a model. SSC niches were injured by inducing abdominal cryptorchidism in rats. Briefly, testes of anesthetized rats were elevated into the abdominal cavity through the inguinal canal for 14 days. After descent of testes, MSC or MSC secretome treatment was applied to the animals by local subtunical injections. RESULTS: Local administration of MSC or MSC secretome was sufficient to recover spermatogenesis and production of functional germ cells. The effects of MSC and their secreted components were comparable, leading to restoration of Sertoli cell pools and recovery of Leydig cell secretory functions. CONCLUSION: Our data suggest that MSCs mimic the functions of lost supportive cells within the stem cell niche, transiently providing paracrine stimuli for target cells and triggering tissue regenerative processes after damage.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Células Intersticiales del Testículo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regeneración , Células de Sertoli/metabolismo , Espermatogénesis , Nicho de Células Madre , Animales , Humanos , Masculino , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987106

RESUMEN

Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications. Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical for tissue regeneration. Due to comparable effects along with superior safety MSC conditioned medium (MSC-CM) containing a complex of MSC-secreted products is considered a reasonable alternative to cell therapy. However, the lack of standards regulating bioprocessing, use of proper auxiliary materials, and quality control complicates the development of MSC secretome-based therapeutics. In this study, we suggested several approaches addressing these issues. We manufactured 36 MSC-CM samples based on different xeno-free serum-free chemically defined media (DMEM-LG or MSC NutriStem® XF) using original protocols and considered total concentrations of regeneration-associated paracrine factors secreted by human adipose-derived MSC at each time-point of conditioning. Using regression analysis, we retrospectively predicted associations between concentrations of several components of MSC-CM and its biological activity to stimulate human dermal fibroblast and endothelial cell migration in vitro as routine examples of potency assays for cell-based products. We also demonstrated that the cell culture medium might affect MSC-CM biological activity to varying degrees depending on the potency assay type. Furthermore, we showed that regression analysis might help to overcome donor variability. The suggested approaches might be successfully applied for other cell types if their secretome was shown to be promising for application in regenerative medicine.


Asunto(s)
Medios de Cultivo Condicionados/metabolismo , Células Madre Mesenquimatosas/metabolismo , Investigación Biomédica Traslacional , Movimiento Celular , Supervivencia Celular , Dermis/citología , Células Endoteliales/citología , Fibroblastos/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/análisis , Modelos Biológicos , Análisis de Regresión
12.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769851

RESUMEN

Regeneration is a fundamental process attributed to the functions of adult stem cells. In the last decades, delivery of suspended adult stem cells is widely adopted in regenerative medicine as a leading means of cell therapy. However, adult stem cells cannot complete the task of human body regeneration effectively by themselves as far as they need a receptive microenvironment (the niche) to engraft and perform properly. Understanding the mechanisms underlying mammalian regeneration leads us to an assumption that improved outcomes of cell therapy require a specific microenvironment that is generated in damaged areas prior to stem cell delivery. To a certain extent, it may be achieved by the delivery of mesenchymal stromal cells (MSCs), not in dispersed form, but rather in self-organized cell sheets (CS) ⁻ tissue-like structures comprised of viable cells and microenvironment components: extracellular matrix and soluble factors deposited in the matrix. In this review, we highlight the potential role of MSCs as regeneration organizers and speculate that this function emerges in CS. This concept shifts our understanding of the therapeutic mechanism underlying a widely known CS-based delivery method for regenerative medicine.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Regeneración/genética , Microambiente Celular/genética , Matriz Extracelular/genética , Humanos , Medicina Regenerativa/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA