Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38894315

RESUMEN

This paper addresses issues concerning biometric authentication based on handwritten signatures. Our research aimed to check whether a handwritten signature acquired with a mobile device can effectively verify a user's identity. We present a novel online signature verification method using coordinates of points and pressure values at each point collected with a mobile device. Convolutional neural networks are used for signature verification. In this paper, three neural network models are investigated, i.e., two self-made light SigNet and SigNetExt models and the VGG-16 model commonly used in image processing. The convolutional neural networks aim to determine whether the acquired signature sample matches the class declared by the signer. Thus, the scenario of closed set verification is performed. The effectiveness of our method was tested on signatures acquired with mobile phones. We used the subset of the multimodal database, MobiBits, that was captured using a custom-made application and consists of samples acquired from 53 people of diverse ages. The experimental results on accurate data demonstrate that developed architectures of deep neural networks can be successfully used for online handwritten signature verification. We achieved an equal error rate (EER) of 0.63% for random forgeries and 6.66% for skilled forgeries.

2.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732900

RESUMEN

Navigation lies at the core of social robotics, enabling robots to navigate and interact seamlessly in human environments. The primary focus of human-aware robot navigation is minimizing discomfort among surrounding humans. Our review explores user studies, examining factors that cause human discomfort, to perform the grounding of social robot navigation requirements and to form a taxonomy of elementary necessities that should be implemented by comprehensive algorithms. This survey also discusses human-aware navigation from an algorithmic perspective, reviewing the perception and motion planning methods integral to social navigation. Additionally, the review investigates different types of studies and tools facilitating the evaluation of social robot navigation approaches, namely datasets, simulators, and benchmarks. Our survey also identifies the main challenges of human-aware navigation, highlighting the essential future work perspectives. This work stands out from other review papers, as it not only investigates the variety of methods for implementing human awareness in robot control systems but also classifies the approaches according to the grounded requirements regarded in their objectives.

3.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571467

RESUMEN

The paper addresses issues concerning secure authentication in computer systems. We focus on multi-factor authentication methods using two or more independent mechanisms to identify a user. User-specific behavioral biometrics is widely used to increase login security. The usage of behavioral biometrics can support verification without bothering the user with a requirement of an additional interaction. Our research aimed to check whether using information about how partial passwords are typed is possible to strengthen user authentication security. The partial password is a query of a subset of characters from a full password. The use of partial passwords makes it difficult for attackers who can observe password entry to acquire sensitive information. In this paper, we use a Siamese neural network and n-shot classification using past recent logins to verify user identity based on keystroke dynamics obtained from the static text. The experimental results on real data demonstrate that keystroke dynamics authentication can be successfully used for partial password typing patterns. Our method can support the basic authentication process and increase users' confidence.

4.
Sensors (Basel) ; 21(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070966

RESUMEN

Intelligent wireless networks that comprise self-organizing autonomous vehicles equipped with punctual sensors and radio modules support many hostile and harsh environment monitoring systems. This work's contribution shows the benefits of applying such networks to estimate clouds' boundaries created by hazardous toxic substances heavier than air when accidentally released into the atmosphere. The paper addresses issues concerning sensing networks' design, focussing on a computing scheme for online motion trajectory calculation and data exchange. A three-stage approach that incorporates three algorithms for sensing devices' displacement calculation in a collaborative network according to the current task, namely exploration and gas cloud detection, boundary detection and estimation, and tracking the evolving cloud, is presented. A network connectivity-maintaining virtual force mobility model is used to calculate subsequent sensor positions, and multi-hop communication is used for data exchange. The main focus is on the efficient tracking of the cloud boundary. The proposed sensing scheme is sensitive to crucial mobility model parameters. The paper presents five procedures for calculating the optimal values of these parameters. In contrast to widely used techniques, the presented approach to gas cloud monitoring does not calculate sensors' displacements based on exact values of gas concentration and concentration gradients. The sensor readings are reduced to two values: the gas concentration below or greater than the safe value. The utility and efficiency of the presented method were justified through extensive simulations, giving encouraging results. The test cases were carried out on several scenarios with regular and irregular shapes of clouds generated using a widely used box model that describes the heavy gas dispersion in the atmospheric air. The simulation results demonstrate that using only a rough measurement indicating that the threshold concentration value was exceeded can detect and efficiently track a gas cloud boundary. This makes the sensing system less sensitive to the quality of the gas concentration measurement. Thus, it can be easily used to detect real phenomena. Significant results are recommendations on selecting procedures for computing mobility model parameters while tracking clouds with different shapes and determining optimal values of these parameters in convex and nonconvex cloud boundaries.

5.
Sensors (Basel) ; 16(9)2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27649186

RESUMEN

Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA