Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 114: 103568, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162166

RESUMEN

High temperatures for extended periods, which do not allow animals to recover from heat stress, affect in particular those BLV-infected animals that carry a high proviral load. For this study, animals were discriminated between BLV (+) and BLV (-), and those belonging to the first group, were classified based on their proviral load. The expression of the inflammatory cytokine TNF-α and its receptors, which play an important role in disease progression, were quantified by qPCR in two different seasons. During the summer, average temperature was 19.8 °C, maximums higher than 30 °C were frequent. Instead, during the autumn, the average temperature was 12.63 °C, and temperatures never exceeded 27 °C. During this season, almost no periods of temperatures exceeded the comfort limit. Our results revealed that the expression levels of TNF-α and its receptors were downregulated in animals with high proviral load. This fact could affect their antiviral response and predispose to viral dissemination; over time, animals with a poorer immune system are prone to acquiring opportunistic diseases. Conversely, animals with LPL maintained their expression profile, with behavior comparable to non-infected animals. These findings should be considered by producers and researchers, given the problems that global warming is causing lately to the planet.

2.
Vet Res Commun ; 45(4): 431-439, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34453235

RESUMEN

Bovine leukemia virus (BLV) main host cells are B lymphocytes. Infected animals can be classified into high or low proviral load (HPL or LPL respectively), regarding the number of proviral copies infected lymphocytes they carry. After infection, there is an overexpression of several cytokines, particularly TNF-α, which has a delicate regulation mediated by receptors TNFRI and TNFRII; the first one involved with apoptosis, while the other stimulates cell proliferation. The study aimed to quantify TNF-α and its receptors mRNA expression, and in which extent in vitro proliferation was affected, in peripheral blood mononuclear cells (PBMC) from BLV-infected animals with different proviral loads, after the addition or not of synthetic TNF-α (rTNF-α) for 48 h. PBMC from BLV-infected animals showed spontaneous proliferation after 48 h in culture but did not show changes in proliferation rates after 48 h incubation in the presence of the rTNF-α. TNF-α mRNA expression after 48 h culture without exogenous stimulation was significantly lower, regardless of the proviral load of the donor, compared to non-infected animals. In the LPL animals, the expression of TNF-α mRNA was significantly lower with respect to the control group while the expression of TNFRI mRNA was significantly increased. The HPL animals showed a significant decrease in the expression of TNF-α and TNFRII mRNA respect to the control group. After 48 h incubation with rTNF-α, PBMC from infected animals had different responses: TNF-α and TNFRI mRNA expression was reduced in PBMC from the LPL group compared to the BLV negative group, but no differences were observed in PBMC from the HPL group. TNFRII mRNA expression showed no differences between HPL, LPL, and BLV negative groups, though HPL animals expressed 10.35 times more TNFRI mRNA than LPL. These results support the hypothesis that LPL animals, when faced with viral reactivation, present a pro-apoptotic and anti-proliferative state. However, complementary studies are needed to explain the influence of TNFRII on the development of the HLP profile. On the other hand, exogenous stimulation studies reinforce the hypothesis that BLV infection compromises the immune response of the animals.


Asunto(s)
Leucosis Bovina Enzoótica/inmunología , Virus de la Leucemia Bovina/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Carga Viral , Animales , Bovinos , Proliferación Celular , Citocinas/inmunología , Leucosis Bovina Enzoótica/virología , Expresión Génica , Sistema Inmunológico , Leucocitos Mononucleares/virología , ARN Mensajero/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Vet Immunol Immunopathol ; 235: 110232, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33799007

RESUMEN

Heat stress is one of the environmental factors that most severely affects milk industry, as it has impact on production, immune responses and reproductive performance. The present study was conducted with high-performance Holando-Argentino cows. Our objective was to study TNF-α and its receptors pattern expression in cows from a region characterized by extreme climatic seasonality. Animals were evaluated in three periods: spring (n = 15), summer (n = 14) and autumn (n = 11). Meteorological records from a local station were used to estimate the temperature and humidity index (THI) by means of an equation previously defined. A THI higher than 68 is indicative of stressing conditions. During the summer period, the animals were exposed to 8.5 ±â€¯1.09 h of heat stress, or THI > 68. In spring, stress hours were reduced to 1.4 ±â€¯0.5 every day, while during the autumn, there were no recorded heat stress events. Expression of TNF-α, and its receptors was determined by qPCR. During the summer, TNF-α and its receptors expression diminished drastically compared to the rest of the year, when stressful conditions were infrequent. We conclude that animals that are not physiologically prepared to resist high temperatures might have a less efficient immune response, reinforcing the need to develop new strategies to improve animal welfare.


Asunto(s)
Trastornos de Estrés por Calor/inmunología , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/inmunología , Receptores del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Femenino , Trastornos de Estrés por Calor/genética , Calor , Humedad , Lactancia , Leucocitos Mononucleares/inmunología , Receptores del Factor de Necrosis Tumoral/inmunología , Estaciones del Año , Factor de Necrosis Tumoral alfa/inmunología
4.
PLoS One ; 15(6): e0234939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579585

RESUMEN

Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.


Asunto(s)
Leucosis Bovina Enzoótica/genética , Células Epiteliales/metabolismo , Células Epiteliales/virología , Virus de la Leucemia Bovina/fisiología , Glándulas Mamarias Animales/patología , RNA-Seq , Transcriptoma/genética , Animales , Bovinos , Línea Celular , Análisis por Conglomerados , Femenino , Regulación de la Expresión Génica , Genoma , Análisis de Componente Principal
5.
Vet Immunol Immunopathol ; 206: 41-48, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30502911

RESUMEN

Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.


Asunto(s)
Apoptosis , Leucosis Bovina Enzoótica/inmunología , Virus de la Leucemia Bovina/inmunología , Subgrupos Linfocitarios/inmunología , Carga Viral/veterinaria , Animales , Bovinos , Proliferación Celular , Células Cultivadas , Femenino
6.
J Mammary Gland Biol Neoplasia ; 23(3): 101-107, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29777406

RESUMEN

The incidence of breast cancer is continuously increasing worldwide, as influenced by many factors that act synergistically. In the last decade there was an increasing interest in the possible viral etiology of human breast cancer. Since then, many viruses have been associated with this disease (murine mammary tumor virus, MMTV; Epstein-Barr virus, EBV; and human papillomavirus, HPV). Recently, BLV has been identified in human breast cancers giving rise to the hypothesis that it could be one of the causative agents of this condition. BLV is a retrovirus distributed worldwide that affects cattle, causing lymphosarcoma in a small proportion of infected animals. Because of its similarity with human retroviruses like HTLV and HIV, BLV was assumed to also be involved in tumor emergence. Based on this assumption, studies were focused on the possible role of BLV in human breast cancer development. We present a compilation of the current knowledge on the subject and some prospective analysis that is required to fully end this controversy.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/virología , Virus de la Leucemia Bovina/patogenicidad , Animales , Bovinos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA