Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clin. transl. oncol. (Print) ; 26(4): 797-807, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-VR-44

RESUMEN

Tumor cells must resist the host's immune system while maintaining growth under harsh conditions of acidity and hypoxia, which indicates that tumors are more robust than normal tissue. Immunotherapeutic agents have little effect on solid tumors, mostly because of the tumor density and the difficulty of penetrating deeply into the tissue to achieve the theoretical therapeutic effect. Various therapeutic strategies targeting the tumor microenvironment (TME) have been developed. Immunometabolic disorders play a dominant role in treatment resistance at both the TME and host levels. Understanding immunometabolic factors and their treatment potential may be a way forward for tumor immunotherapy. Here, we summarize the metabolism of substances that affect tumor progression, the crosstalk between the TME and immunosuppression, and some potential tumor-site targets. We also summarize the progress and challenges of tumor immunotherapy.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Inmunoterapia , Metabolismo , Hipoxia , Microambiente Tumoral , Neoplasias/tratamiento farmacológico
2.
Clin Transl Oncol ; 26(4): 797-807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37740892

RESUMEN

Tumor cells must resist the host's immune system while maintaining growth under harsh conditions of acidity and hypoxia, which indicates that tumors are more robust than normal tissue. Immunotherapeutic agents have little effect on solid tumors, mostly because of the tumor density and the difficulty of penetrating deeply into the tissue to achieve the theoretical therapeutic effect. Various therapeutic strategies targeting the tumor microenvironment (TME) have been developed. Immunometabolic disorders play a dominant role in treatment resistance at both the TME and host levels. Understanding immunometabolic factors and their treatment potential may be a way forward for tumor immunotherapy. Here, we summarize the metabolism of substances that affect tumor progression, the crosstalk between the TME and immunosuppression, and some potential tumor-site targets. We also summarize the progress and challenges of tumor immunotherapy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia de Inmunosupresión , Tolerancia Inmunológica , Hipoxia , Microambiente Tumoral
3.
Transl Cancer Res ; 12(8): 2181-2196, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37701121

RESUMEN

Background and Objective: Transition metals are commonly used catalysts in bioorthogonal chemistry and have attracted extensive attention in biochemistry because of their efficient catalytic performance. In recent years, transition metal-mediated cycloaddition reactions, bond cleavage, and formation reactions are being actively explored for tumor treatment. However, the direct application of transition metals in complex biological environments has several problems, including poor solubility, toxicity, and easy inactivation. The combination of transition metals and nanomaterials can solve those problems by playing a bioorthogonal catalytic role in tumor treatment. In this review, we summarize some research on the application of transition metals modified by nanomaterials in tumor therapy and discuss the potential and challenges of transition metal-mediated bioorthogonal therapy in comprehensive tumor therapy. Methods: English literature on transition metal in cancer treatment was searched in PubMed and Web of Science. The main search terms were "cancer treatment", "bioorthogonal reaction", "transition metal", "bioorthogonal catalysis", etc. Key Content and Findings: This review summarizes research on several major transition metals that can be used for bioorthogonal catalysis with the assistance of nanomaterials in anti-tumor therapy. In addition, bioorthogonal catalysis is a new supplement to antitumor therapy. We have compiled the potential challenges of the clinical application of transition metal-based nanocatalysts, which lays the foundation for future research related to medicinal chemistry and targeted cancer therapy. Conclusions: Most of the transition metals still have a lot of room for exploration in cancer treatment research. We still need more research to confirm the feasibility of in vivo and clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA