Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 272(Pt 1): 132833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834112

RESUMEN

Chicken meat processing generates a substantial number of byproducts, which are either underutilized or improperly disposed. In this study, we employed in silico approaches to identify antioxidant peptides in chicken liver byproducts. Notably, the peptide WYR exhibited remarkable 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity with an IC50 of 0.13 ± 0.01 mg/mL and demonstrated stability under various conditions, including thermal, pH, NaCl, and simulated gastrointestinal digestion. Molecular docking analysis revealed significant hydrogen bonding interactions, while molecular dynamics showed differential stability with ABTS and 2,2-Diphenyl-1-picrylhydrazyl (DPPH). WYR exhibited improved stress resistance, decreased levels of reactive oxygen species (ROS), elevated the activities of superoxide dismutase (SOD) and catalase (CAT), and modulated the expression of crucial genes through the insulin/insulin-like growth factor (IIS) signaling pathway, mitogen-activated protein kinase (MAPK), and heat shock transcription factor-1 (HSF-1) pathways. These effects collectively contributed to the extension of Caenorhabditis elegans' lifespan. This study not only provides an effective method for antioxidant peptide analysis but also highlights the potential for enhancing the utilization of poultry byproducts.


Asunto(s)
Antioxidantes , Caenorhabditis elegans , Pollos , Hígado , Simulación del Acoplamiento Molecular , Péptidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/química , Péptidos/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/efectos de los fármacos , Simulación por Computador , Superóxido Dismutasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo
2.
Toxins (Basel) ; 14(9)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36136536

RESUMEN

The venom and transcriptome profile of the captive Chinese cobra (Naja atra) is not characterized until now. Here, LC-MS/MS and illumine technology were used to unveil the venom and trascriptome of neonates and adults N. atra specimens. In captive Chinese cobra, 98 co-existing transcripts for venom-related proteins was contained. A total of 127 proteins belong to 21 protein families were found in the profile of venom. The main components of snake venom were three finger toxins (3-FTx), snake venom metalloproteinase (SVMP), cysteine-rich secretory protein (CRISP), cobra venom factor (CVF), and phosphodiesterase (PDE). During the ontogenesis of captive Chinese cobra, the rearrangement of snake venom composition occurred and with obscure gender difference. CVF, 3-FTx, PDE, phospholipase A2 (PLA2) in adults were more abundant than neonates, while SVMP and CRISP in the neonates was richer than the adults. Ontogenetic changes in the proteome of Chinese cobra venom reveals different strategies for handling prey. The levels of different types of toxin families were dramatically altered in the wild and captive specimens. Therefore, we speculate that the captive process could reshape the snake venom composition vigorously. The clear comprehension of the composition of Chinese cobra venom facilitates the understanding of the mechanism of snakebite intoxication and guides the preparation and administration of traditional antivenom and next-generation drugs for snakebite.


Asunto(s)
Naja naja , Mordeduras de Serpientes , Animales , Antivenenos/metabolismo , Cromatografía Liquida , Cisteína/metabolismo , Venenos Elapídicos/metabolismo , Metaloproteasas/metabolismo , Naja naja/metabolismo , Fosfolipasas A2/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Proteoma/metabolismo , Venenos de Serpiente/metabolismo , Espectrometría de Masas en Tándem
3.
Artículo en Inglés | MEDLINE | ID: mdl-34745239

RESUMEN

BACKGROUND: Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. METHODS: Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). RESULTS: This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5'-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). CONCLUSION: These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.

4.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484782

RESUMEN

Abstract Background Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. Methods Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). Results This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). Conclusion These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.

5.
J. venom. anim. toxins incl. trop. dis ; 27: e20200196, 2021. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1346436

RESUMEN

Snake venoms are complex mixtures of toxic proteins or peptides encoded by various gene families that function synergistically to incapacitate prey. In the present study, in order to unravel the proteomic repertoire of Deinagkistrodon acutus venom, some trace abundance components were analyzed. Methods Shotgun proteomic approach combined with shotgun nano-LC-ESI-MS/MS were employed to characterize the medically important D. acutus venom, after collected samples were enriched with the combinatorial peptide ligand library (CPLL). Results This avenue helped us find some trace components, undetected before, in D. acutus venom. The results indicated that D. acutus venom comprised 84 distinct proteins from 10 toxin families and 12 other proteins. These results are more than twice the number of venom components obtained from previous studies, which were only 29 distinct proteins obtained through RP-HPLC for the venom of the same species. The present results indicated that in D. acutus venom, the most abundant components (66.9%) included metalloproteinases, serine proteinases, and C-type lectin proteins; the medium abundant components (13%) comprised phospholipases A2 (PLA2) and 5'-nucleotidases and nucleases; whereas least abundant components (6%) were aminopeptidases, L-amino acid oxidases (LAAO), neurotoxins and disintegrins; and the trace components. The last were undetected before the use of conventional shotgun proteomics combined with shotgun nano-LC-ESI-MS/MS, such as cysteine-rich secretory proteins Da-CRPa, phospholipases B-like 1, phospholipases B (PLB), nerve growth factors (NGF), glutaminyl-peptide cyclortransferases (QC), and vascular non-inflammatory molecules 2 (VNN2). Conclusion These findings demonstrated that the CPLL enrichment method worked well in finding the trace toxin proteins in D. acutus venom, in contrast with the previous venomic characterization of D. acutus by conventional LC-MS/MS. In conclusion, this approach combined with the CPLL enrichment was effective for allowing us to explore the hidden D. acutus venomic profile and extended the list of potential venom toxins.(AU)


Asunto(s)
Animales , Oxidorreductasas , Péptidos , Venenos de Víboras , Proteoma , Neurotoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA