Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(5): 377, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35438325

RESUMEN

This paper presents a tiered assessment approach that enabled identification, triage, interrogation and confirmation of significantly contaminated areas of an urbanised West Australian estuary. The spatial distribution of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and bioavailable metals was determined in surficial sediments of the Swan-Canning Estuary through broad-scale screening (500 cores, 100 composite samples, 20 locations). The application of sediment quality guideline values (SQGVs) enabled ranking of locations through risk-based scoring and identification of contaminant hotspots. Subsequent targeted ecotoxicological and chemical assessment was undertaken at the highest scoring location in each tributary (80 cores, 16 composite samples, 3 locations, 16 sites). In the Canning tributary, Bull Creek sediments demonstrated the highest metal concentrations and greatest number of SQGVs exceeded. High-level toxicity was experienced in copepods and moderate toxicity in mussels (test sensitivity: copepod>mussel>amphipod). Toxicity-inducing contamination was attributable to two stormwater outfalls and limited to 300 m from points of discharge. In the Swan tributary, Claisebrook sediments demonstrated the highest concentrations of all PAHs, most OCPs and metals and the greatest number of SQGVs exceeded. High-level toxicity was reported in fish and mussels and moderate toxicity in copepods and amphipods (test sensitivity: fish>mussel>amphipod>copepod). Toxicity-inducing contamination included a stretch of estuary >1 km long, and two stormwater outfalls in the area were likely sources. The distribution and nature of PAH contamination suggested an additional source at Claisebrook. This combined chemistry and biological effects dataset provides critical information for the management of planned major development and concomitant estuary-bed disturbance in the coming decade.


Asunto(s)
Anfípodos , Copépodos , Hidrocarburos Clorados , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Australia , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Hidrocarburos Clorados/análisis , Hidrocarburos Clorados/toxicidad , Metales/análisis , Plaguicidas/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol ; 32(10): 2305-2315, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28707373

RESUMEN

Many cities worldwide are established adjacent to estuaries and their catchments resulting in estuarine contamination due to intense anthropogenic activities. The aim of this study was to evaluate if fish living in an estuarine urban waterway were affected by contamination, via the measurement of a suite of biomarkers of fish health. Black bream (Acanthopagrus butcheri) were sampled in a small urban embayment and a suite of biomarkers of fish health measured. These were condition factor (CF), liver somatic index (LSI), gonadosomatic index (GSI), hepatic EROD activity, polycyclic aromatic hydrocarbon (PAH) biliary metabolites, serum sorbitol dehydrogenase (s-SDH) and branchial enzymes cytochrome C oxidase (CCO), and lactate dehydrogenase (LDH) activities. The biomarkers of exposure EROD activity, and pyrene- and B(a)P-type biliary metabolites confirmed current or recent exposure of the fish and that fish were metabolizing contaminants. Relative to a reference site, LSI was higher in fish collected in the urban inlet as was the metabolic enzyme LDH activity. CF, GSI, s-SDH, CCO, and naphthalene-type metabolites were at similar levels in the urban inlet relative to the reference site. PAH biliary metabolite ratios of high-molecular-weight to low-molecular-weight suggest that fish from the urban inlet were exposed to pyrogenic PAHs, likely from legacy contamination and road runoff entering the embayment. Similarly, the sediment PAH ratios and the freshness indices suggested legacy contamination of a pyrogenic source, likely originating from the adjacent historic gasworks site and a degree of contamination of petrogenic nature entering the inlet via storm water discharge. Biomarkers of exposure and effect confirmed that black bream collected in the Claisebrook Cove inlet, Western Australia, are currently exposed to contamination and are experiencing metabolic perturbations not observed in fish collected at a nearby reference site.


Asunto(s)
Perciformes/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bahías , Bilis/metabolismo , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Monitoreo del Ambiente , Estuarios , L-Iditol 2-Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Hígado/metabolismo
3.
Mar Pollut Bull ; 118(1-2): 382-387, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28237077

RESUMEN

Black bream (Acanthopagrus butcheri) were collected from an artificial inlet, Claisebrook Cove, Western Australia. Claisebrook Cove is adjacent to an historic contaminated site that was remediated during the 1990s. It was later identified as a priority area due to elevated levels of sediment contaminants including Zn, Cu, and Pb. Black bream were collected from this cove in 2005 and 2012 and their otoliths were analysed by laser ablation inductively coupled plasma mass spectrometry of the most recent growth zone. Levels of Zn and Mn, which are metabolically regulated, did not correlate with sediment contamination. However, reduction in sediment Cu levels over time coincided with reduced Cu otolith levels from 2005 to 2012. Results indicate that the elemental composition of the marginal edge of Black bream otoliths can identify bioavailable contaminants in an urban estuary and, with monitoring, can be utilized to establish long-term trends.


Asunto(s)
Metales Pesados/análisis , Membrana Otolítica/química , Contaminantes Químicos del Agua/análisis , Animales , Bahías , Estuarios , Sedimentos Geológicos , Microquímica , Perciformes , Australia Occidental
4.
Environ Sci Pollut Res Int ; 21(22): 12951-67, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24981035

RESUMEN

Studies on endocrine disruption in Australia have mainly focused on wastewater effluents. Limited knowledge exists regarding the relative contribution of different potential sources of endocrine active compounds (EACs) to the aquatic environment (e.g., pesticide run-off, animal farming operations, urban stormwater, industrial inputs). In this study, 73 river sites across mainland Australia were sampled quarterly for 1 year. Concentrations of 14 known EACs including natural and synthetic hormones and industrial compounds were quantified by chemical analysis. EACs were detected in 88 % of samples (250 of 285) with limits of quantification (LOQ) ranging from 0.05 to 20 ng/l. Bisphenol A (BPA; LOQ = 20 ng/l) was the most frequently detected EAC (66 %) and its predicted no-effect concentration (PNEC) was exceeded 24 times. The most common hormone was estrone, detected in 28 % of samples (LOQ = 1 ng/l), and the PNEC was also exceeded 24 times. 17α-Ethinylestradiol (LOQ = 0.05 ng/l) was detected in 10 % of samples at concentrations ranging from 0.05 to 0.17 ng/l. It was detected in many samples with no wastewater influence, and the PNEC was exceeded 13 times. In parallel to the chemical analysis, endocrine activity was assessed using a battery of CALUX bioassays. Estrogenic activity was detected in 19 % (53 of 285) of samples (LOQ = 0.1 ng/l 17ß-estradiol equivalent; EEQ). Seven samples exhibited estrogenic activity (1-6.5 ng/l EEQ) greater than the PNEC for 17ß-estradiol. Anti-progestagenic activity was detected in 16 % of samples (LOQ = 8 ng/l mifepristone equivalents; MifEQ), but the causative compounds are unknown. With several compounds and endocrine activity exceeding PNEC values, there is potential risk to the Australian freshwater ecosystems.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Australia , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/química , Línea Celular Tumoral , Ecosistema , Disruptores Endocrinos/análisis , Disruptores Endocrinos/química , Estradiol/análisis , Estradiol/química , Estradiol/toxicidad , Etinilestradiol/análisis , Etinilestradiol/química , Etinilestradiol/toxicidad , Humanos , Concentración 50 Inhibidora , Límite de Detección , Fenoles/análisis , Fenoles/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
5.
Water Res ; 50: 420-31, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24210511

RESUMEN

We investigated water quality at an advanced water reclamation plant and three conventional wastewater treatment plants using an "ecotoxicity toolbox" consisting of three complementary analyses (chemical analysis, in vitro bioanalysis and in situ biological monitoring), with a focus on endocrine disruption. The in vitro bioassays were chosen to provide an appropriately wide coverage of biological effects relevant to managed aquifer recharge and environmental discharge of treated wastewater, and included bioassays for bacterial toxicity (Microtox), genotoxicity (umuC), photosynthesis inhibition (Max-I-PAM) and endocrine effects (E-SCREEN and AR-CALUX). Chemical analysis of hormones and pesticides using LCMSMS was performed in parallel to correlate standard analytical methods with the in vitro assessment. For two plants with surface water discharge into open drains, further field work was carried out to examine in situ effects using mosquitofish (Gambusia holbrooki) as a bioindicator species for possible endocrine effects. The results show considerable cytotoxicity, phytotoxicity, estrogenicity and androgenicity in raw sewage, all of which were significantly reduced by conventional wastewater treatment. No biological response was detected to RO water, suggesting that reverse osmosis is a significant barrier to biologically active compounds. Chemical analysis and in situ monitoring revealed trends consistent with the in vitro results: chemical analysis confirmed the removal trends observed by the bioanalytical tools, and in situ sampling did not reveal any evidence of endocrine disruption specifically due to discharge of treated wastewater (although other sources may be present). Biomarkers of exposure (in vitro) and effect (in vivo or in situ) are complementary and together provide information with a high level of ecological relevance. This study illustrates the utility of combining multiple lines of evidence in the assessment of water quality.


Asunto(s)
Monitoreo del Ambiente/métodos , Reciclaje , Aguas Residuales , Calidad del Agua , Animales , Ciprinodontiformes , Disruptores Endocrinos/toxicidad , Femenino , Masculino , Mutágenos/toxicidad , Pruebas de Toxicidad , Vitelogeninas/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
6.
J Environ Qual ; 43(5): 1702-12, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25603256

RESUMEN

Trace organic contaminant (TrOC) studies in Australia have, to date, focused on wastewater effluents, leaving a knowledge gap of their occurrence and risk in freshwater environments. This study measured 42 TrOCs including industrial compounds, pesticides, and pharmaceuticals and personal care products by liquid chromatography tandem mass spectrometry at 73 river sites across Australia quarterly for 1 yr. Trace organic contaminants were found in 92% of samples, with a median of three compounds detected per sample (maximum 18). The five most commonly detected TrOCs were the pharmaceuticals salicylic acid (82%, maximum = 1530 ng/L), paracetamol (also known as acetaminophen; 45%, maximum = 7150 ng/L), and carbamazepine (27%, maximum = 682 ng/L), caffeine (65%, maximum = 3770 ng/L), and the flame retardant (2-chloroethyl) phosphate (44%, maximum = 184 ng/L). Pesticides were detected in 28% of the samples. To determine the risk posed by the detected TrOCs to the aquatic environment, hazard quotients were calculated by dividing the maximum concentration detected for each compound by the predicted no-effect concentrations. Three of the 42 compounds monitored (the pharmaceuticals carbamazepine and sulfamethoxazole and the herbicide simazine) had a hazard quotient >1, suggesting that they may be causing adverse effects at the most polluted sites. A further 10 compounds had hazard quotients >0.1, indicating a potential risk; these included four pharmaceuticals, three personal care products, and three pesticides. Most compounds had hazard quotients significantly <0.1. The number of TrOCs measured in this study was limited and further investigations are required to fully assess the risk posed by complex mixtures of TrOCs on exposed biota.

8.
New Phytol ; 137(2): 335-343, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33863184

RESUMEN

Many hypotheses have been developed to explain the adaptive nature of insect galls. One of these, the nutrition hypothesis, states that gall formers have advantages over other insects because gall tissue provides a better (higher quality) food source than unmodified tissue. However, this has rarely been experimentally tested. In a test of this hypothesis, we grew plants of Cirsium arvense (L.) Scop. in a factorial design with two main treatments: the addition of nitrogen (to enhance foliar N levels) and of fungicide (to reduce colonization of roots by arbuscular mycorrhizal fungi). Mycorrhizal fungi have been shown previously to reduce the N concentration of host plants. Plants were exposed to adult gall flies, Urophora cardui L., and maintained through one season to allow maturation of galls. Reduction of the percentage mycorrhizal colonization by fungicide resulted in an elevation of total stem N comparable to that achieved by N addition, but gall N concentration remained unchanged in all treatments. Nitrogen application elevated stem N levels when mycorrhizal fungi were present, but application of both compounds together did not result in any increase over either single treatment. Fungicide application resulted in larger galls, which contained more larval chambers, with more live, and heavier, larvae. However, the main effects of N were not significant, as N addition only increased fly performance on plants where mycorrhizas were not reduced. It is suggested that U. cardui gall inhabitants can manipulate N at an optimal level and thus might conform to a modified version of the nutrition hypothesis. Mycorrhizal colonization might reduce gall fly performance by delaying the appearance, or impairing the quality, of secondary nutritive tissue in the gall. Future tests of the nutrition hypothesis should include a consideration of the plant's mycorrhizal status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA