Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomed Pharmacother ; 178: 117273, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116782

RESUMEN

The gut-brain axis mediates the interaction pathway between microbiota and opioid addiction. In recent years, many studies have shown that molecular hydrogen has therapeutic and preventive effects on various diseases. This study aimed to investigate whether molecular hydrogen could serve as pharmacological intervention agent to reduce risks of reinstatement of opioid seeking and explore the mechanism of gut microbiota base on animal experiments and human studies. Morphine-induced conditioned place preference (CPP) was constructed to establish acquisition, extinction, and reinstatement stage, and the potential impact of H2 on the behaviors related to morphine-induced drug extinction was determined using both free accessible and confined CPP extinction paradigms. The effects of morphine on microbial diversity and composition of microbiota, as well as the subsequent changes after H2 intervention, were assessed using 16 S rRNA gene sequencing. Short-Chain Fatty Acids (SCFAs) in mice serum were detected by gas chromatography-mass spectrometry (GC-MS). Meanwhile, we also conducted molecular hydrogen intervention and gut microbiota testing in opioid-addicted individuals. Our results revealed that molecular hydrogen could enhance the extinction of morphine-related behavior, reducing morphine reinstatement. Gut microbes may be a potential mechanism behind the therapeutic effects of molecular hydrogen on morphine addiction. Additionally, molecular hydrogen improved symptoms of depression and anxiety, as well as gut microbial features, in individuals with opioid addiction. This study supports molecular hydrogen as a novel and effective intervention for morphine-induced addiction and reveals the mechanism of gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Hidrógeno , Morfina , Trastornos Relacionados con Opioides , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Hidrógeno/farmacología , Masculino , Ratones , Humanos , Trastornos Relacionados con Opioides/tratamiento farmacológico , Morfina/farmacología , Ratones Endogámicos C57BL , Eje Cerebro-Intestino/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Analgésicos Opioides/farmacología , Adulto , Ácidos Grasos Volátiles/metabolismo
2.
Nat Prod Res ; : 1-7, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832674

RESUMEN

Five new sesquiterpenoids, (4S, 5S, 6S, 7S, 8 R)-5,6-dihydroxy-1-acetoxy-10(14)-en-britannilactone (1), (4S, 5 R, 6S, 7S, 8 R)-5,6-dihydroxy-1-acetoxy-10(14)-en-britannilactone (2), 6-O-propionyl-britannilactone (3), 1ß-hydroxy-3α-acetoxyeudesma-11(13)-en-12,8ß-olide (4) and 1ß,5ß-dihydroxyeudesma-11(13)-en-12,8ß-olide (5), along with twelve known ones were isolated from the flowers of Pentanema britannicum (L.) D.Gut.Larr. Among them, compounds 1 and 2 were stereoisomers which belong to 1,10-seco-eudesmane sesquiterpenoid with rare double bond between C-10 and C-14. The structures of the isolated compounds were elucidated by various spectroscopic methods, including 1D and 2D NMR experiments.

3.
Immunity ; 57(3): 528-540.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417442

RESUMEN

RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Antígeno CTLA-4 , Factores de Transcripción Forkhead/genética , Ácido Láctico/metabolismo , Linfocitos Infiltrantes de Tumor , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral , Proteasas Ubiquitina-Específicas/metabolismo
4.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788092

RESUMEN

The functional integrity of Tregs is interwoven with cellular metabolism; however, the mechanisms governing Treg metabolic programs remain elusive. Here, we identified that the deubiquitinase USP47 inhibited c-Myc translation mediated by the RNA N6-methyladenosine (m6A) reader YTHDF1 to maintain Treg metabolic and functional homeostasis. USP47 positively correlated with the tumor-infiltrating Treg signature in samples from patients with colorectal cancer and gastric cancer. USP47 ablation compromised Treg homeostasis and function in vivo, resulting in the development of inflammatory disorders, and boosted antitumor immune responses. USP47 deficiency in Tregs triggered the accumulation of the c-Myc protein and in turn exacerbated hyperglycolysis. Mechanistically, USP47 prevented YTHDF1 ubiquitination to attenuate the association of YTHDF1 with translation initiation machinery, thereby decreasing m6A-based c-Myc translation efficiency. Our findings reveal that USP47 directs m6A-dependent metabolic programs to orchestrate Treg homeostasis and suggest novel approaches for selective immune modulation in cancer and autoimmune diseases by targeting of USP47.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Homeostasis , Linfocitos T Reguladores , Ubiquitinación
5.
Clin. transl. oncol. (Print) ; 25(8): 2499-2513, aug. 2023. graf
Artículo en Inglés | IBECS | ID: ibc-222426

RESUMEN

Purpose The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. Methods The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. Results ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial−mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/β-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. Conclusion ACACA could be a potential biomarker and molecular target for HCC (AU)


Asunto(s)
Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , beta Catenina/metabolismo , Pronóstico
6.
Cell Death Differ ; 30(8): 2005-2016, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474750

RESUMEN

Converting tumor-associated macrophages (TAMs) from the M2 to the M1 phenotype is considered an effective strategy for cancer therapy. TRAF3 is known to regulate NF-κB signaling. However, the role of TRAF3 in TAM polarization has not yet been completely elucidated. Here, we found that ablation of TRAF3 increased M1 markers, iNOS, FGR and SLC4A7, while down-regulated M2 markers, CD206, CD36 and ABCC3, expression levels in macrophages. Moreover, TRAF3 deficiency enhanced LPS-induced M1 and abolished IL-4-induced macrophage polarization. Next, quantitative ubiquitomics assays demonstrated that among the quantitative 7618 ubiquitination modification sites on 2598 proteins, ubiquitination modification of IL-4 responding proteins was the most prominently reduced according to enrichment analysis. STAT6, a key factor of IL-4 responding protein, K450 and K129 residue ubiquitination levels were dramatically decreased in TRAF3-deficient macrophages. Ubiquitination assay and luciferase assay demonstrated that TRAF3 promotes STAT6 ubiquitination and transcriptional activity. Site mutation analysis revealed STAT6 K450 site ubiquitination played a vital role in TRAF3-mediated STAT6 activation. Finally, B16 melanoma mouse model demonstrated that myeloid TRAF3 deficiency suppressed tumor growth and lung metastasis in vivo. Taken together, TRAF3 plays a vital role in M2 polarization via regulating STAT6 K450 ubiquitination in macrophages.


Asunto(s)
Interleucina-4 , Factor 3 Asociado a Receptor de TNF , Ratones , Animales , Interleucina-4/farmacología , Interleucina-4/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/farmacología , Macrófagos/metabolismo , Transducción de Señal , Fenotipo , Activación de Macrófagos
7.
Psychopharmacology (Berl) ; 240(8): 1775-1787, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37400661

RESUMEN

RATIONALE: The management of depression continues to be challenging despite the variety of available antidepressants. Herbal medicines are used in many cultures but lack stringent testing to understand their efficacy and mechanism of action. Isoalantolactone (LAT) from Elecampane (Inula helenium) improved the chronic social defeat stress (CSDS)-induced anhedonia-like phenotype in mice comparable to fluoxetine, a selective serotonin reuptake inhibitor (SSRI). OBJECTIVES: Compare the effects of LAT and fluoxetine on depression-like behaviors in mice exposed to CSDS. RESULT: The CSDS-induced decrease in protein expression of postsynaptic density (PSD95), brain derived neurotrophic factor (BDNF), and glutamate receptor subunit-1 (GluA1) in the prefrontal cortex was restored by LAT. LAT showed robust anti-inflammatory activity and can lessen the increase in IL-6 and TNF-α caused by CSDS. CSDS altered the gut microbiota at the taxonomic level, resulting in significant changes in α- and ß-diversity. LAT treatment reestablished the bacterial abundance and diversity and increased the production of butyric acid in the gut that was inhibited by CSDS. The levels of butyric acid were negatively correlated with the abundance of Bacteroidetes, and positively correlated with those of Proteobacteria and Firmicutes across all treatment groups. CONCLUSIONS: The current data suggest that, similar to fluoxetine, LAT show antidepressant-like effects in mice exposed to CSDS through the modulation of the gut-brain axis.


Asunto(s)
Depresión , Fluoxetina , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fluoxetina/farmacología , Derrota Social , Eje Cerebro-Intestino , Ácido Butírico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL
9.
Clin Transl Oncol ; 25(8): 2499-2513, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36976490

RESUMEN

PURPOSE: The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. METHODS: The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. RESULTS: ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial-mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/ß-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. CONCLUSION: ACACA could be a potential biomarker and molecular target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Pronóstico , Proteínas/metabolismo
10.
J Pharm Pharmacol ; 75(5): 585-592, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36940405

RESUMEN

OBJECTIVES: To review the pharmacokinetics, pharmacological action and mechanism of isoalantolactone (IAL). Explore the therapeutic potential of isoalantolactone.Keywords including isoalantolactone, pharmacological effects, pharmacokinetic and toxicity were used for literature search in PubMed, Excerpta Medica Database (EMBASE) and Web of Science, to identify articles published from 1992 to 2022. KEY FINDINGS: IAL has a great many obiological activities such as anti-inflammatory, antioxidant, antitumour, neuroprotection, with no obvious toxicity. This review suggests that IAL exerts different pharmacological effects with different mechanisms of action at different doses, and may be a potential drug candidate to treat inflammatory diseases, neurodegenerative diseases and cancer, with medicinal value. SUMMARY: IAL has various pharmacological activities and medicinal values. However, further research is needed to determine its specific intracellular action sites and targets, so as to fully understand its therapeutic mechanism and provide a reference for the treatment of related diseases.


Asunto(s)
Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamiento farmacológico , Antiinflamatorios/farmacología , Sesquiterpenos/farmacología
11.
J Appl Toxicol ; 43(6): 789-798, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36523111

RESUMEN

Asiaticoside is a natural triterpene compound derived from Centella asiatica, possessing confirmed cardioprotective property. However, the roles of asiaticoside in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-caused cardiomyocyte dysfunction remain largely obscure. Human cardiomyocyte AC16 cells were stimulated with OGD/R to mimic myocardial ischemia/reperfusion injury and treated with asiaticoside. Cytotoxicity was investigated by CCK-8 assay and lactate dehydrogenase (LDH) release analysis. Autophagy- and Wnt/ß-catenin signaling-related protein levels were measured via western blotting. Asiaticoside (0-20 µM) did not induce cardiomyocyte cytotoxicity. Asiaticoside (20 µM) mitigated OGD/R-induced autophagy, cytotoxicity, oxidative stress, and myocardial injury. Rapamycin, an autophagy inductor, reversed the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury, whereas 3-methyadanine, an autophagy inhibitor, played an opposite effect. Asiaticoside (20 µM) attenuated OGD/R-induced Wnt/ß-catenin signaling inactivation, which was reversed after transfection with si-ß-catenin. Transfection with si-ß-catenin attenuated the influences of asiaticoside on autophagy, cytotoxicity, oxidative stress, and myocardial injury. In conclusion, asiaticoside protected against OGD/R-induced cardiomyocyte cytotoxicity, oxidative stress, and myocardial injury via blunting autophagy through activating the Wnt/ß-catenin signaling, indicating the therapeutic potential of asiaticoside in myocardial ischemia/reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Triterpenos , Humanos , Miocitos Cardíacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , beta Catenina/metabolismo , Oxígeno/metabolismo , Glucosa/metabolismo , Apoptosis , Triterpenos/farmacología , Triterpenos/metabolismo , Autofagia
12.
Brain Res Bull ; 193: 47-58, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516898

RESUMEN

Methamphetamine (METH) is a potent and highly addictive psychostimulant and one of the most widely used illicit drugs, the abuse of which has become a severe public health problem worldwide. A growing amount of evidence has indicated potential connections between gut microbiota and mental disorders induced by METH and associations with neural and metabolic pathways. The present study aimed to explore the relationship between fecal microbial alterations and neuropsychiatric diseases in METH addictions. Thus, mental disorders and gut microbial alterations were analyzed by self-rating depression (SDS) and anxiety (SAS) scales and 16 S rRNA gene sequencing, respectively. Our results showed that increased SDS and SAS indices and decreased alpha diversity indicated more serious mental disorders and lower bacterial diversity in METH users than in the age-matched healthy control group. The gut microbial composition in female METH users was also significantly altered, with reductions in hydrogen-producing bacteria, including Bacteroides and Roseburia. Molecular hydrogen (H2) is spontaneously produced by intestinal bacteria in the process of anaerobic metabolism, which is the main pathway for H2 production in vivo. Numerous studies have shown that hydrogen intervention can significantly improve neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease. Our results showed that hydrogen intervention, including drinking and inhaling, significantly alleviated mental disorders induced by METH abuse, and the inhalation of hydrogen also altered gut microbiota profiles in the METH abusers. These results suggest that hydrogen intervention has potential therapeutic applicability in the treatment of mental disorders in METH abusers.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Estimulantes del Sistema Nervioso Central , Microbioma Gastrointestinal , Metanfetamina , Humanos , Femenino , Metanfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología
13.
Biol Proced Online ; 24(1): 21, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460966

RESUMEN

PURPOSE: A variety of studies have connected circadian rhythm to the initiation and progression of hepatocellular carcinoma (HCC). The purpose of this study was to figure out about the circadian genes' profile characteristics, prognostic significance, and targeted values in HCC. METHODS: The expression profiles and prognostic significance of circadian genes in the cancer genome atlas liver hepatocellular carcinoma (TCGA-LIHC) database were investigated using bioinformatics analysis. The expression features of Casein Kinase 1 Delta (CSNK1D), a robust signature gene, was further detected by immunohistochemistry, western blotting and Real-time quantitative PCR (RT-qPCR) in a local HCC cohort. The effect of CSNK1D on corresponding phenotypes of HCC cells was evaluated using Cell Counting Kit-8 (CCK8), flowcytometry, clone assay, Transwell assay, and xenograft assay. In addition, the underlying mechanisms of CSNK1D in the Wnt/ß-catenin signaling were validated by multiple molecular experiments. RESULTS: Abnormal expression of the Circadian genome was associated with the malignant clinicopathological characteristics of HCC patients. A 10 circadian gene-based signature with substantial prognostic significance was developed using Cox regression and least absolute shrinkage and selection operator (LASSO) analysis. Of them, CSNK1D, significantly elevated in a local HCC cohort, was chosen for further investigation. Silencing or overexpression of CSNK1D significantly reduced or increased proliferation, invasion, sorafenib resistance, xenograft development, and epithelial-mesenchymal transformation (EMT) of HCC cells, respectively. Mechanically, CSNK1D exacerbated the aggressiveness of HCC cells by activating Wnt/ß-catenin signaling through interacting with Dishevelled Segment Polarity Protein 3 (DVL3). CONCLUSIONS: The Circadian gene CSNK1D was found to contribute to HCC progression by boosting the Wnt/ß-catenin pathway, hinting that it could be a prospective therapeutic target for HCC.

14.
Front Neurosci ; 16: 977376, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36177361

RESUMEN

Andrographolide is a natural antibiotic that has the ability to dispel heat, detoxify, reduce inflammation, and relieve pain. Recent research has shown that it can exert anti-inflammatory effects via multiple pathways and multiple targets (mediated by NF-κB, JAK/STAT, T cell receptor, and other signaling pathways). It can inhibit human lung cancer cells, colon cancer cells, osteosarcoma cells, and other tumor cells, as well as reduce bacterial virulence and inhibit virus-induced cell apoptosis. It can also regulate inflammatory mediator expression to protect the nervous system and effectively prevent mental illness. Additionally, andrographolide regulates the immune system, treats cardiovascular and cerebral vascular diseases, protects the liver, and the gallbladder. It is clear that andrographolide has a huge range of potential applications. The mechanism of andrographolide's anti-inflammatory, antibacterial, antiviral, and nervous system defense in recent years have been reviewed in this article.

15.
Front Neurosci ; 16: 977374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110092

RESUMEN

Matrine possesses anti-cancer properties, as well as the prevention and treatment of allergic asthma, and protection against cerebral ischemia-reperfusion injury. Its mechanism of action may be (1) regulation of cancer cell invasion, migration, proliferation, and cell cycle to inhibit tumor growth; (2) reduction of oxidized low-density lipoprotein and advanced glycation end products from the source by exerting anti-inflammatory and antioxidant effects; (3) protection of brain damage and cortical neurons by regulating apoptosis; (4) restoration of the intestinal barrier and regulation of the intestinal microbiota. This article aims to explore matrine's therapeutic potential by summarizing comprehensive information on matrine's pharmacology, toxicity, and bioavailability.

16.
Int J Biol Sci ; 18(3): 1022-1038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173534

RESUMEN

Overexpression of Flap endonuclease 1 (FEN1) has been previously implicated in hepatocellular carcinoma (HCC), while its expression features and mechanisms remain unclear. In the current study, differential expression genes (DEGs) were screened in HCC tissues and normal liver tissues in 4 Gene Expression Omnibus (GEO) datasets. FEN1, one of the hub co-overexpressed genes, was further determined overexpressed in HCC tissues in TCGA, local HCC cohorts, and hepatocarcinogenesis model. In addition, high expression of FEN1 indicated poor prognosis of HCC patients. Loss-of-function and gain-of-function assays demonstrated that FEN1 enhanced the proliferation, cell cycle phage transition, migration/ invasion, therapy resistance, xenograft growth, and epithelial-mesenchymal transition (EMT) process of HCC cells. Mechanically, FEN1 could inactivate P53 signaling by preventing the ubiquitination and degradation of mouse double minute 2 (MDM2) via recruiting ubiquitin-specific protease 7 (USP7). Interfering USP7 with P22077 significantly reversed the malignant phenotypes activated by FEN1. In conclusion, this study suggests FEN1 as a robust prognostic biomarker and potential target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo
17.
Int J Neuropsychopharmacol ; 25(5): 412-424, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35020881

RESUMEN

BACKGROUND: Prolonged forced abstinence from morphine can increase cue-induced cravings for the drug, contributing to a persistent vulnerability to relapse. Previous studies have identified the implications of aberrant microRNA (miRNA) regulation in the pathogenesis of morphine addiction, but the changes in miRNA expression during the incubation of morphine craving are still unknown. METHODS: Nucleus accumbens (NAc)-specific altered miRNA transcriptomics was determined in a mouse model of cue-induced incubation of morphine craving following a next-generation sequencing method and verified by RT-qPCR. Bioinformatics analysis was performed to predict the target gene of selected miRNA, and the protein expression of the target gene was detected by western blot. A dual-luciferase assay was performed to confirm the binding sites, and gain- and loss-of-function strategy was applied to understand the mechanism of miRNA and its target gene. RESULTS: The miR-592-3p observed to be downregulated in the NAc core was linked to the incubation of morphine craving, and a dual-luciferase assay was performed to confirm the binding sites of miR-592-3p in its target gene, tomoregulin-1 (TMEFF1). Also, gain- and loss-of-function analyses revealed that the inhibition of miR-592-3p expression in the NAc core negatively regulated TMEFF1 expression, thereby enhancing the incubation of morphine craving; however, the overexpression of miR-592-3p in the NAc core resulted in a decreased expression of TMEFF1, thereby reducing the incubation of morphine craving. CONCLUSION: Our findings demonstrated that miR-592-3p can improve the incubation of morphine craving by targeting TMEFF1, and thus, it holds a therapeutic potential to inhibit opioid craving.


Asunto(s)
Ansia , Proteínas de la Membrana , MicroARNs , Morfina , Proteínas de Neoplasias , Núcleo Accumbens , Analgésicos Opioides/farmacología , Animales , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Morfina/farmacología , Proteínas de Neoplasias/genética , Núcleo Accumbens/metabolismo
18.
Cell Death Dis ; 13(1): 93, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091545

RESUMEN

TRK-fused gene (TFG) is known to be involved in protein secretion and plays essential roles in an antiviral innate immune response. However, its function in LPS-induced inflammation and pyroptotic cell death is still unknown. Here, we reported that TFG promotes the stabilization of Unc-51 like autophagy activating kinase (ULK1) and participates in LPS plus nigericin (Ng) induced pyroptotic cell death. Our results showed that TFG-deficient THP-1 macrophages exhibit higher mitochondrial ROS production. LPS/Ng stimulation triggers a much higher level of ROS and induces pyroptotic cell death. ULK1 undergoes a rapid turnover in TFG-deficient THP-1 cells. TFG forms complex with an E3 ligase, tumor necrosis factor receptor-associated factor 3 (TRAF3), and stabilizes ULK1 via disturbing ULK1-TRAF3 interaction. Knockdown of TFG facilitates the interaction of ULK1 with TRAF3 and subsequent K48-linked ULK1 ubiquitination and proteasome degradation. Rescue of ULK1 expression blocks LPS/Ng-induced cell death in TFG-deficient THP-1 macrophages. Taken together, TFG plays an essential role in LPS/Ng-induced pyroptotic cell death via regulating K48-linked ULK1 ubiquitination in macrophages.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Piroptosis , Factor 3 Asociado a Receptor de TNF , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Nigericina , Especies Reactivas de Oxígeno/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Ubiquitinación
19.
Nat Prod Res ; 36(11): 2875-2877, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33980087

RESUMEN

The inhibitory effect of three degraded sesquiterpene lactones, iso-seco-tanapartholide, arteludooicinolide A and millifolide A isolated from Achillea millefolium L., on anti-human lung cancer cells was examined using MTT and reporter gene assays. Millifolide A has significant inhibitory effects on the proliferation of human lung cancer cells probably through inducing cell apoptosis.


Asunto(s)
Achillea , Neoplasias Pulmonares , Sesquiterpenos , Línea Celular , Proliferación Celular , Éter/farmacología , Humanos , Lactonas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA