Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 6(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651977

RESUMEN

This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.


Asunto(s)
Chlamydiales/fisiología , Coxiella/fisiología , Farmacorresistencia Bacteriana/fisiología , Rickettsia/fisiología , Enfermedades de los Animales/microbiología , Animales , Antibacterianos/farmacología , Técnicas Bacteriológicas/métodos , Técnicas de Cultivo de Célula/métodos , Chlamydiales/efectos de los fármacos , Chlamydiales/patogenicidad , Coxiella/efectos de los fármacos , Coxiella/patogenicidad , Citoplasma/microbiología , Transferencia de Gen Horizontal , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Rickettsia/efectos de los fármacos , Rickettsia/patogenicidad , Zoonosis/microbiología
2.
Dis Model Mech ; 8(1): 1-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25561744

RESUMEN

The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.


Asunto(s)
Modelos Animales de Enfermedad , Intestinos/microbiología , Microbiota , Animales , Colitis/patología , Bases de Datos Factuales , Dieta , Genotipo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Intestinos/patología , Ratones , Obesidad/patología , Fenotipo , Investigación Biomédica Traslacional
3.
Genome Biol ; 14(1): R4, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23347395

RESUMEN

BACKGROUND: Murine models are a crucial component of gut microbiome research. Unfortunately, a multitude of genetic backgrounds and experimental setups, together with inter-individual variation, complicates cross-study comparisons and a global understanding of the mouse microbiota landscape. Here, we investigate the variability of the healthy mouse microbiota of five common lab mouse strains using 16S rDNA pyrosequencing. RESULTS: We find initial evidence for richness-driven, strain-independent murine enterotypes that show a striking resemblance to those in human, and which associate with calprotectin levels, a marker for intestinal inflammation. After enterotype stratification, we find that genetic, caging and inter-individual variation contribute on average 19%, 31.7% and 45.5%, respectively, to the variance in the murine gut microbiota composition. Genetic distance correlates positively to microbiota distance, so that genetically similar strains have more similar microbiota than genetically distant ones. Specific mouse strains are enriched for specific operational taxonomic units and taxonomic groups, while the 'cage effect' can occur across mouse strain boundaries and is mainly driven by Helicobacter infections. CONCLUSIONS: The detection of enterotypes suggests a common ecological cause, possibly low-grade inflammation that might drive differences among gut microbiota composition in mammals. Furthermore, the observed environmental and genetic effects have important consequences for experimental design in mouse microbiome research.


Asunto(s)
Variación Genética , Genotipo , Ratones Endogámicos/microbiología , Microbiota , Animales , Femenino , Helicobacter/aislamiento & purificación , Inflamación/genética , Inflamación/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos/genética , ARN Ribosómico 16S/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA