Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Vet Res Commun ; 47(3): 1217-1229, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36707493

RESUMEN

This study investigated the effect of heat stress on the physiological parameters, oxidation resistance ability and immune responses in juvenile hybrid yellow catfish. Heat stress group exposed to 35 °C and control to 28 °C. Blood and liver were sampled at different hours' post-exposure. Results showed that red blood cell (RBC), white blood cell (WBC) counts, Hemoglobin (HGB) levels and hematocrit (HCT) values increased significantly (P < 0.05) post-exposure to heat stress. This indicates the increase of cell metabolism. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), total protein (TP), triglyceride (TG) and glucose increased significantly (P < 0.05) indicating the need to cope with stress and cell damage. Liver TC, TG, COR hormone, C3 complement increased significantly from 24 to 96 h. Heat stress mostly affects the hepatic antioxidant and immune resistance functions, resulting in increments of cortisol levels, lysozyme, superoxide dismutase (SOD), and catalase (CAT) enzyme activities. The increase of Malondialdehyde (MDA), alkaline phosphatase (AKP) indicate stimulation of the immune responses to protect the liver cells from damage. The decrease in Liver TP indicated liver impairment. Decrease in Glycogen content from 6 to 96 h indicated mobilization of more metabolites to cope with increased energy demand. Interestingly, results showed that heat stress trigged costly responses in the experimental fish like accelerated metabolism and deplete energy reserves, which could indirectly affect ability of fish to set up efficient long term defense responses against stress. These results provide insight into prevention and management of stress in juvenile hybrid yellow catfish.


Asunto(s)
Bagres , Animales , Bagres/metabolismo , Antioxidantes/farmacología , Inmunidad Innata , Estrés Oxidativo , Respuesta al Choque Térmico , Hígado/metabolismo
2.
Microbiologyopen ; 9(5): e1000, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32175701

RESUMEN

The aim of this study was to determine the effects of different dietary protein levels on the growth, physiological parameters, and gut microbiome of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Two pellet feed diets with low (25%, LPD) and normal (35%, NPD) protein levels were fed to GIFT in aquaria at 28°C for 8 weeks. The LPD reduced trypsin activity and inhibited the growth of GIFT. The serum alanine amino transferase and aspartate transaminase activities, hepatic malondialdehyde content, and superoxide dismutase, glutathione peroxidase, and catalase activities were significantly higher in LPD GIFT than in NPD GIFT (p < .05). The LPD led to decreased lysozyme activity and increased levels of C3 (p < .05). A 16S rRNA gene profiling analysis showed that the LPD significantly affected the gut microbial composition. Compared with the NPD, the LPD significantly decreased intestinal microbial diversity (p < .05). The macronutrient distribution affected the taxonomic profile of gut bacteria, mainly the phyla Bacteroidetes, Proteobacteria, and Firmicutes. The LPD favored growth of the genus Bacteroides. The NPD appeared to increase the abundance of the genera Lawsonia, Romboutsia, and Sphingomonas. Our results showed that, compared with NPD GIFT, the LPD GIFT had weakened nonspecific immune function, altered microbial community structure, and decreased gut microbial diversity.


Asunto(s)
Alimentación Animal , Bacterias/clasificación , Microbioma Gastrointestinal , Tilapia/microbiología , Tilapia/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Modificados Genéticamente/microbiología , Animales Modificados Genéticamente/fisiología , Acuicultura/métodos , Biodiversidad , ADN Bacteriano/genética , Dieta/veterinaria , Nutrientes , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA