Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cureus ; 14(9): e29268, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36133504

RESUMEN

Introduction Radiation necrosis in the brain is a frequent complication of brain radiation therapy (RT) and is characterized by various neurological symptoms including cognitive dysfunction, headaches, weakness, apraxia, aphasia, and numbness. These symptoms may be progressive and treatment-resistant. Currently, risk factors for radiation necrosis are not well characterized. The goal of this study is to identify risk factors for cerebral radiation necrosis in order to improve clinicians' ability to appropriately weigh the risks and benefits of brain RT. Methods A retrospective chart review was performed on patients who were diagnosed with brain tumors and received RT (3D conformal therapy, volumetric modulated arc therapy, stereotactic radiosurgery, or stereotactic radiotherapy) at the University of Arkansas for Medical Sciences from July 1, 2017, to July 1, 2019. Data regarding demographics, characteristics of cancer, chemotherapy status and class, comorbidities, and additional medications of patients were collected via EPIC. Total RT dose, fraction size, volume of brain receiving 12 Gy (V12), and retreatment of locally recurrent tumors were recorded from Eclipse. The diagnosis of radiation necrosis was based on MRI reports that were examined for a time period of 24 months following the completion of radiation treatment and confirmed, when possible, by biopsy. Cases that did not have an MRI available at least two months after the completion of RT were excluded. Statistical association analyses were used to identify candidate risk factors to radiation necrosis. These candidate risk factors were further used to assess their associations to demographics and other characteristics of cancer and treatments. Finally, adjusted and unadjusted logistic regression models were used to predict radiation necrosis using a single risk factor or multiple risk factors. ROC curves were used to evaluate the performance of prediction or discrimination of the logistic regression models. Results A total of 139 patients were studied. The mean ± standard deviation (SD) for age was 60.4 ± 13.6 years, female:male ratio was 71:68, and White:African American:other race ratio was 112:24:3. A total of 43 (30.9%) patients were diagnosed with radiation necrosis. Radiation adjuvant to surgery, concurrent systemic therapy status, total dose, and V12 were found to be significantly associated with radiation necrosis and considered candidate risk factors of radiation necrosis in the study. Predictive models showed adjusted odds ratios ([aORs] 95% confidence intervals or CIs) of 3.70 (1.01-13.56) and 8.19 (1.78-37.78) with radiation adjuvant to surgery and concurrent systemic therapy, respectively. For every one unit (log-transformed) increase of total dose and V12, the aORs (95% CI's) were 27.35 (3.74-200.16) and 1.63 (1.15-2.32), respectively. Conclusion Our study suggested a positive correlation of concurrent systemic therapy status and post-surgical adjuvant RT with the incidence of radiation necrosis. It further demonstrated that greater total RT dose and V12 were related to the risk of developing radiation necrosis following brain RT. Given the findings of this study, the aforementioned factors should be considered when weighing the risk of radiation necrosis with the benefits of treatment.

2.
Surg Neurol Int ; 12: 280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221611

RESUMEN

BACKGROUND: Patients with unresectable locoregional cancer recurrences have limited management options. Reirradiation increases the risk of toxicity, particularly when perilesional dose-volume constraints are exceeded. We present and discuss two cases of previously irradiated tumors in the central nervous system (CNS) that was reirradiated using the pulsed reduced dose-rate radiotherapy (PRDR) technique. CASE DESCRIPTION: A 58-year-old female with a history of metastatic small cell lung cancer to the brain status post multiple rounds of radiation and chemotherapy presented with increasing weakness in her right arm and leg. Magnetic resonance imaging (MRI) revealed a growly peripherally enhancing 1.2 cm mass in the left precentral gyrus that had previously received prophylactic cranial irradiation and stereotactic radiosurgery. The patient was re-irradiated with 35 Gy in 100 fractions over 3 weeks, using PRDR with improved motor function at 3-month follow-up. A 41-year-old male with recurrent glioblastoma of the thoracic spinal cord presented with worsening neurological symptoms, including inability to ambulate due to bilateral leg weakness, causing wheelchair use. MRI thoracic spine revealed a recurrent thoracic lesion 2.2 × 1 × 0.8 cm. In addition to chronic chemotherapy, the patient was retreated palliatively in the same area at 50 Gy in 250 fractions, over 6 weeks, using PRDR. The treated lesion was stable on follow-up imaging, and the patient was able to walk with the assistance of a walker. CONCLUSION: In our two cases, PRDR proved effective in the treatment of recurrent malignant CNS tumors that were previously irradiated. Prospective studies are needed to delineate the efficacy and toxicity of PRDR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA