Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(15): 2695-2702, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38989663

RESUMEN

Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 µg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.


Asunto(s)
Administración Intranasal , Electroencefalografía , Pilocarpina , ATPasa Intercambiadora de Sodio-Potasio , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Masculino , Pilocarpina/farmacología , Electroencefalografía/métodos , Electroencefalografía/efectos de los fármacos , Ratas , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Ratas Wistar , Anticuerpos/farmacología , Anticuerpos/administración & dosificación
2.
Brain Sci ; 13(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831832

RESUMEN

Epilepsy is characterized by a predisposition to generate recurrent and spontaneous seizures; it affects millions of people worldwide. Status epilepticus (SE) is a severe type of seizure. In this context, screening potential treatments is very important. In the present study, we evaluated the beneficial effects of rosmarinic acid (RA) in pilocarpine-induced in vitro and in vivo models of epileptiform activity. Using an in vitro model in combined entorhinal cortex-hippocampal from Wistar rats we evaluated the effects of RA (10 µg/mL) on the lactate release and a glucose fluorescent analogue, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NDBG), after incubation in high potassium aCSF supplemented or not with pilocarpine. In the in vivo model, SE was induced in male C57BL/6 mice by pilocarpine. At 1, 24, and 48 h after the end of SE mice were treated with RA (30 mg/kg/v.o.). We evaluated the neuromotor impairment by neuroscore tests and protein carbonyl levels in the cerebral cortex. In both in vitro models, RA was able to decrease the stimulated lactate release, while no effect on 2-NBDG uptake was found. RA has beneficial effects in models of epileptiform activity in vivo and in vitro. We found that RA treatment attenuated SE-induced neuromotor impairment at the 48 h timepoint. Moreover, post-SE treatment with RA decreased levels of protein carbonyls in the cerebral cortex of mice when compared to their vehicle-treated counterparts. Importantly, RA was effective in a model of SE which is relevant for the human condition. The present data add to the literature on the biological effects of RA, which could be a good candidate for add-on therapy in epilepsy.

3.
Brain Res ; 1784: 147883, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35300975

RESUMEN

BACKGROUND: Status epilepticus (SE) is a neurological life-threatening condition, resulting from the failure of the mechanisms responsible for seizure termination. SE is often pharmacoresistant and associated with significant morbidity and mortality. Hence, ceasing or attenuating SE and its consequences is of fundamental importance. Beta-caryophyllene is a functional CB2 receptor agonist and exhibit a good safety profile. Besides, it displays beneficial effects in several experimental conditions, including neuroprotective activity. In the present study we aimed to investigate the effects of beta-caryophyllene on pilocarpine-induced SE. METHODS: Wistar rats were submitted to pilocarpine-induced SE and monitored for 24 h by video and EEG for short-term recurrence of seizure activity (i.e. seizures occurring within 24 h after termination of SE). Rats received beta-caryophyllene (100 mg/kg, ip) at 1, 8- and 16-hours after SE. Twenty-four hours after SE we evaluated sensorimotor response, neuronal damage (fluoro jade C staining) and serum albumin infiltration into brain parenchyma. RESULTS: Beta-caryophyllene-treated animals presented fewer short-term recurrent seizures than vehicle-treated counterparts, suggesting an anticonvulsant effect after SE. Behavioral recovery from SE and the number of fluoro jade C positive cells in the hippocampus and thalamus were not modified by beta-caryophyllene. Treatment with beta-caryophyllene attenuated the SE-induced increase of albumin immunoreactivity in the hippocampus, indicating a protective effect against blood-brain-barrier breakdown. CONCLUSIONS: Given the inherent difficulties in the treatment of SE and its consequences, present results suggest that beta-caryophyllene deserve further investigation as an adjuvant therapeutic strategy for SE.


Asunto(s)
Epilepsia Generalizada , Estado Epiléptico , Animales , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Pilocarpina/toxicidad , Sesquiterpenos Policíclicos , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
4.
Epilepsy Res ; 160: 106277, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32036236

RESUMEN

Thromboxane A2 (TXA2) is an important eicosanoid in the cardiovascular system, and increasing evidence suggests that TXA2 receptors (TPs) and their ligands may constitute valuable tools for the development of neuroprotective drugs. However, the role of TPs on seizure-induced damage has not been investigated. Therefore, we evaluated the effects of SQ 29,548, a potent and selective TP antagonist-on neuromotor performance, neurodegeneration, reactive astrocytosis, and c-Fos protein immunoreactivity after pilocarpine-induced status epilepticus (SE) in mice. Adult C57BL/6 mice received intracerebroventricular SQ 29,548 injections 90 min and 24 h after pilocarpine-induced SE. We found that SQ 29,548 prevented the impairment of neuromotor performance (Neuroscore test) 48 h after pilocarpine-induced SE. Data analysis suggested the existence of two subgroups of SQ 29,548-treated post-SE animals. Eight out of 12 SQ 29,548-treated animals displayed Neuroscore values identical to those of vehicle-treated controls, and were considered SQ 29,548 responders. However, 4 out of 12 SQ 29,548-treated animals did not show any improvement in Neuroscore values, and were considered SQ 29,548 non-responders. Treatment with SQ 29,548 attenuated SE-induced increase in the number of FJC- or GFAP-positive cells in the hippocampus of SQ 29,548 responders. In addition, SQ 29,548 prevented the SE-elicited increase of c-Fos immunoreactivity in the hippocampus. In summary, our results suggest that the TP antagonist (SQ 29,548) improves neurological outcome after pilocarpine-induced SE in mice. The existence of SQ 29,548 responders and non-responders was suggested by results from the Neuroscore test. Additional studies are needed to understand the mechanisms underlying these findings, as well as the potential uses of TP antagonists in the treatment of seizure-induced damage.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Ácidos Grasos Insaturados/uso terapéutico , Hipocampo/efectos de los fármacos , Hidrazinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Receptores de Tromboxanos/antagonistas & inhibidores , Estado Epiléptico/tratamiento farmacológico , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hidrazinas/farmacología , Ratones , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Pilocarpina , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA