Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654121

RESUMEN

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Asunto(s)
Silenciador del Gen , ARN Largo no Codificante , Inactivación del Cromosoma X , Factor de Transcripción YY1 , Animales , Femenino , Masculino , Ratones , Alelos , Diferenciación Celular/genética , Línea Celular , Cromatina/metabolismo , Cromatina/genética , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética
2.
Cell Rep ; 39(7): 110830, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584662

RESUMEN

X chromosome inactivation (XCI) is mediated by the non-coding RNA Xist, which directs chromatin modification and gene silencing in cis. The RNA binding protein SPEN and associated corepressors have a central role in Xist-mediated gene silencing. Other silencing factors, notably the Polycomb system, have been reported to function downstream of SPEN. In recent work, we found that SPEN has an additional role in correct localization of Xist RNA in cis, indicating that its contribution to chromatin-mediated gene silencing needs to be reappraised. Making use of a SPEN separation-of-function mutation, we show that SPEN and Polycomb pathways, in fact, function in parallel to establish gene silencing. We also find that differentiation-dependent recruitment of the chromosomal protein SmcHD1 is required for silencing many X-linked genes. Our results provide important insights into the mechanism of X inactivation and the coordination of chromatin-based gene regulation with cellular differentiation and development.


Asunto(s)
Proteínas de Drosophila , ARN Largo no Codificante , Cromatina , Proteínas de Drosophila/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X , Inactivación del Cromosoma X/genética
4.
Nat Commun ; 10(1): 3129, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311937

RESUMEN

Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.


Asunto(s)
ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Línea Celular , Proteínas de Unión al ADN , Técnicas de Inactivación de Genes , Silenciador del Gen , Histonas/genética , Ratones , Células Madre Embrionarias de Ratones , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Unión al ARN/genética
5.
Nat Commun ; 10(1): 30, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604745

RESUMEN

The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , Activación Transcripcional/genética , Inactivación del Cromosoma X , Alelos , Animales , Sistemas CRISPR-Cas , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Islas de CpG , Exones/genética , Femenino , Fibroblastos , Técnicas de Inactivación de Genes , Histonas/genética , Histonas/metabolismo , Masculino , Ratones , Mutación Puntual , Proteínas del Grupo Polycomb/metabolismo
6.
Mol Cell ; 68(5): 955-969.e10, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220657

RESUMEN

The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA.


Asunto(s)
Células Madre Embrionarias/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , ARN Largo no Codificante/metabolismo , Ribonucleoproteínas/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Sitios de Unión , Línea Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Histonas/metabolismo , Lisina/metabolismo , Ratones , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Largo no Codificante/genética , Ribonucleoproteínas/genética , Transcripción Genética , Transfección , Ubiquitinación , Cromosoma X/genética
7.
Science ; 356(6342): 1081-1084, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28596365

RESUMEN

Recruitment of the Polycomb repressive complexes PRC1 and PRC2 by Xist RNA is an important paradigm for chromatin regulation by long noncoding RNAs. Here, we show that the noncanonical Polycomb group RING finger 3/5 (PCGF3/5)-PRC1 complex initiates recruitment of both PRC1 and PRC2 in response to Xist RNA expression. PCGF3/5-PRC1-mediated ubiquitylation of histone H2A signals recruitment of other noncanonical PRC1 complexes and of PRC2, the latter leading to deposition of histone H3 lysine 27 methylation chromosome-wide. Pcgf3/5 gene knockout results in female-specific embryo lethality and abrogates Xist-mediated gene repression, highlighting a key role for Polycomb in Xist-dependent chromosome silencing. Our findings overturn existing models for Polycomb recruitment by Xist RNA and establish precedence for H2AK119u1 in initiating Polycomb domain formation in a physiological context.


Asunto(s)
Células Madre Embrionarias/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Inactivación del Cromosoma X , Animales , Femenino , Ratones , Proteínas del Grupo Polycomb/genética , ARN Largo no Codificante/metabolismo
8.
Genes Dev ; 31(9): 876-888, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28546514

RESUMEN

The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.


Asunto(s)
Regulación de la Expresión Génica , Trastornos Linfoproliferativos/patología , Proteínas Nucleares/fisiología , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , ARN Largo no Codificante/genética , Caracteres Sexuales , Cromosoma X/genética
9.
Nat Commun ; 7: 13661, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892467

RESUMEN

The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Metilación de ADN , Metilación , Ratones , Nucleosomas/metabolismo , Complejo Represivo Polycomb 2/química , Unión Proteica , Dominios Proteicos , Inactivación del Cromosoma X/genética
11.
Mol Cell ; 62(6): 848-861, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27237052

RESUMEN

Global demethylation is part of a conserved program of epigenetic reprogramming to naive pluripotency. The transition from primed hypermethylated embryonic stem cells (ESCs) to naive hypomethylated ones (serum-to-2i) is a valuable model system for epigenetic reprogramming. We present a mathematical model, which accurately predicts global DNA demethylation kinetics. Experimentally, we show that the main drivers of global demethylation are neither active mechanisms (Aicda, Tdg, and Tet1-3) nor the reduction of de novo methylation. UHRF1 protein, the essential targeting factor for DNMT1, is reduced upon transition to 2i, and so is recruitment of the maintenance methylation machinery to replication foci. Concurrently, there is global loss of H3K9me2, which is needed for chromatin binding of UHRF1. These mechanisms synergistically enforce global DNA hypomethylation in a replication-coupled fashion. Our observations establish the molecular mechanism for global demethylation in naive ESCs, which has key parallels with those operating in primordial germ cells and early embryos.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Histonas/metabolismo , Ratones , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas
12.
Stem Cell Reports ; 6(5): 635-642, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27150236

RESUMEN

Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.


Asunto(s)
ARN Helicasas DEAD-box/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , MicroARNs/genética , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética , Ribonucleasa III/genética , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Regiones Promotoras Genéticas , Activación Transcripcional/genética
13.
Mol Cell Biol ; 35(23): 4053-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26391951

RESUMEN

The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Cromosoma X/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatina/química , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Células HEK293 , Histonas/química , Humanos , Lisina/análisis , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
Cell Rep ; 12(4): 562-72, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26190105

RESUMEN

X-chromosome inactivation is the process that evolved in mammals to equalize levels of X-linked gene expression in XX females relative to XY males. Silencing of a single X chromosome in female cells is mediated by the non-coding RNA Xist. Although progress has been made toward identifying factors that function in the maintenance of X inactivation, the primary silencing factors are largely undefined. We developed an shRNA screening strategy to produce a ranked list of candidate primary silencing factors. Validation experiments performed on several of the top hits identified the SPOC domain RNA binding proteins Rbm15 and Spen and Wtap, a component of the m6A RNA methyltransferase complex, as playing an important role in the establishment of Xist-mediated silencing. Localization analysis using super-resolution 3D-SIM microscopy demonstrates that these factors co-localize with Xist RNA within the nuclear matrix subcompartment, consistent with a direct interaction.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Silenciador del Gen , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Factores de Empalme de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
15.
Proc Natl Acad Sci U S A ; 111(6): 2235-40, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469834

RESUMEN

In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5' end of Xist RNA. In this study, we have analyzed Xist-mediated recruitment of PRC2 using two approaches, microarray-based epigenomic mapping and superresolution 3D structured illumination microscopy. Making use of an ES cell line carrying an inducible Xist transgene located on mouse chromosome 17, we show that 24 h after synchronous induction of Xist expression, acquired PRC2 binding sites map predominantly to gene-rich regions, notably within gene bodies. Paradoxically, these new sites of PRC2 deposition do not correlate with Xist-mediated gene silencing. The 3D structured illumination microscopy was performed to assess the relative localization of PRC2 proteins and Xist RNA. Unexpectedly, we observed significant spatial separation and absence of colocalization both in the inducible Xist transgene ES cell line and in normal XX somatic cells. Our observations argue against direct interaction between Xist RNA and PRC2 proteins and, as such, prompt a reappraisal of the mechanism for PRC2 recruitment in X chromosome inactivation.


Asunto(s)
Proteínas del Grupo Polycomb/aislamiento & purificación , ARN Largo no Codificante/aislamiento & purificación , ARN/genética , Animales , Línea Celular , Silenciador del Gen , Ratones , Microscopía Electrónica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/genética , Transcripción Genética
16.
Mol Cell Biol ; 33(16): 3150-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23754746

RESUMEN

The Smchd1 gene encodes a large protein with homology to the SMC family of proteins involved in chromosome condensation and cohesion. Previous studies have found that Smchd1 has an important role in CpG island (CGI) methylation on the inactive X chromosome (Xi) and in stable silencing of some Xi genes. In this study, using genome-wide expression analysis, we showed that Smchd1 is required for the silencing of around 10% of the genes on Xi, apparently independent of CGI hypomethylation, and, moreover, that these genes nonrandomly occur in clusters. Additionally, we found that Smchd1 is required for CpG island methylation and silencing at a cluster of four imprinted genes in the Prader-Willi syndrome (PWS) locus on chromosome 7 and genes from the protocadherin-alpha and -beta clusters. All of the affected autosomal loci display developmentally regulated brain-specific methylation patterns which are lost in Smchd1 homozygous mutants. We discuss the implications of these findings for understanding the function of Smchd1 in epigenetic regulation of gene expression.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Familia de Multigenes , Cromosoma X/genética , Animales , Cadherinas/genética , Proteínas Cromosómicas no Histona/metabolismo , Islas de CpG , Metilación de ADN , Embrión de Mamíferos/metabolismo , Femenino , Eliminación de Gen , Impresión Genómica , Masculino , Ratones , Síndrome de Prader-Willi/genética , Receptores de Superficie Celular/genética
17.
Epigenetics Chromatin ; 4(1): 17, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21982142

RESUMEN

BACKGROUND: Expression of Xist, the master regulator of X chromosome inactivation, is extinguished in pluripotent cells, a process that has been linked to programmed X chromosome reactivation. The key pluripotency transcription factors Nanog, Oct4 and Sox2 are implicated in Xist gene extinction, at least in part through binding to an element located in Xist intron 1. Other pathways, notably repression by the antisense RNA Tsix, may also be involved. RESULTS: Here we employ a transgene strategy to test the role of the intron 1 element and Tsix in repressing Xist in ES cells. We find that deletion of the intron 1 element causes a small increase in Xist expression and that simultaneous deletion of the antisense regulator Tsix enhances this effect. CONCLUSION: We conclude that Tsix and pluripotency factors act synergistically to repress Xist in undifferentiated embryonic stem cells. Double mutants do not exhibit maximal levels of Xist expression, indicating that other pathways also play a role.

18.
PLoS One ; 6(8): e22771, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826206

RESUMEN

One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene (antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents. We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied. Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall, our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby suggesting that the regulation of XCI may be at least partially taxon-specific.


Asunto(s)
ARN no Traducido/genética , Inactivación del Cromosoma X/genética , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Animales , Arvicolinae , Northern Blotting , Exones/genética , Hibridación in Situ , Intrones/genética , Ratones , ARN Largo no Codificante , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roedores/genética , Análisis de Secuencia de ADN
19.
Development ; 138(8): 1541-50, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21389056

RESUMEN

In XX female mammals a single X chromosome is inactivated early in embryonic development, a process that is required to equalise X-linked gene dosage relative to XY males. X inactivation is regulated by a cis-acting master switch, the Xist locus, the product of which is a large non-coding RNA that coats the chromosome from which it is transcribed, triggering recruitment of chromatin modifying factors that establish and maintain gene silencing chromosome wide. Chromosome coating and Xist RNA-mediated silencing remain poorly understood, both at the level of RNA sequence determinants and interacting factors. Here, we describe analysis of a novel targeted mutation, Xist(INV), designed to test the function of a conserved region located in exon 1 of Xist RNA during X inactivation in mouse. We show that Xist(INV) is a strong hypomorphic allele that is appropriately regulated but compromised in its ability to silence X-linked loci in cis. Inheritance of Xist(INV) on the paternal X chromosome results in embryonic lethality due to failure of imprinted X inactivation in extra-embryonic lineages. Female embryos inheriting Xist(INV) on the maternal X chromosome undergo extreme secondary non-random X inactivation, eliminating the majority of cells that express the Xist(INV) allele. Analysis of cells that express Xist(INV) RNA demonstrates reduced association of the mutant RNA to the X chromosome, suggesting that conserved sequences in the inverted region are important for Xist RNA localisation.


Asunto(s)
Exones/genética , Genes Ligados a X/genética , ARN no Traducido/genética , Inactivación del Cromosoma X/genética , Animales , Northern Blotting , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Hibridación Fluorescente in Situ , Masculino , Ratones , ARN Largo no Codificante , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Chromosoma ; 120(2): 177-83, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21110203

RESUMEN

In somatic cells of female marsupial and eutherian mammals, X chromosome inactivation (XCI) occurs. XCI results in the transcriptional silencing of one of the two X chromosomes and is accompanied by specific covalent histone modifications attributable to the inactive chromatin state. Because data about repressed chromatin of the inactive X chromosome (Xi) in marsupials are sparse, we examined in more detail the distribution of active and inactive chromatin markers on metaphase X chromosomes of an American marsupial, Monodelphis domestica. Consistent with data reported previously both for eutherian and marsupial mammals, we found that the Xi of M. domestica lacks active histone markers-H3K4 dimethylation and H3K9 acetylation. We did not observe on metaphase spreads enrichment of the Xi with H3K27 trimethylation which is involved in XCI in eutherians and was detected on the Xi in the interphase nuclei of mature female M. domestica in an earlier study. Moreover, we found that the Xi of M. domestica was specifically marked with H3K9 trimethylation, which is known to be a component of the Xi chromatin in eutherians and is involved in both marsupials and eutherians in meiotic sex chromosome inactivation which has been proposed as an ancestral mechanism of XCI.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Metafase , Monodelphis/genética , Monodelphis/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Femenino , Histonas/química , Histonas/genética , Masculino , Metilación , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA