Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 76: 33-41, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27567686

RESUMEN

Spaced synaptic depolarization induces rapid axon terminal growth and the formation of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). Here, we identify a novel presynaptic function for the Calcium/Calmodulin-dependent Kinase II (CamKII) protein in the control of activity-dependent synaptic growth. Consistent with this function, we find that both total and phosphorylated CamKII (p-CamKII) are enriched in axon terminals. Interestingly, p-CamKII appears to be enriched at the presynaptic axon terminal membrane. Moreover, levels of total CamKII protein within presynaptic boutons globally increase within one hour following stimulation. These effects correlate with the activity-dependent formation of new presynaptic boutons. The increase in presynaptic CamKII levels is inhibited by treatment with cyclohexamide suggesting a protein-synthesis dependent mechanism. We have previously found that acute spaced stimulation rapidly downregulates levels of neuronal microRNAs (miRNAs) that are required for the control of activity-dependent axon terminal growth at this synapse. The rapid activity-dependent accumulation of CamKII protein within axon terminals is inhibited by overexpression of activity-regulated miR-289 in motor neurons. Experiments in vitro using a CamKII translational reporter show that miR-289 can directly repress the translation of CamKII via a sequence motif found within the CamKII 3' untranslated region (UTR). Collectively, our studies support the idea that presynaptic CamKII acts downstream of synaptic stimulation and the miRNA pathway to control rapid activity-dependent changes in synapse structure.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Potenciales de la Membrana , Proyección Neuronal , Terminales Presinápticos/metabolismo , Regiones no Traducidas 3' , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Drosophila , MicroARNs/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología
2.
PLoS One ; 8(7): e68385, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844193

RESUMEN

It is widely accepted that long-term changes in synapse structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing amount of evidence suggests that the microRNA (miRNA) pathway plays an important role in coordinating these processes. Despite recent advances in this field, there remains a critical need to identify specific activity-regulated miRNAs as well as their key messenger RNA (mRNA) targets. To address these questions, we used the larval Drosophila melanogaster neuromuscular junction (NMJ) as a model synapse in which to identify novel miRNA-mediated mechanisms that control activity-dependent synaptic growth. First, we developed a screen to identify miRNAs differentially regulated in the larval CNS following spaced synaptic stimulation. Surprisingly, we identified five miRNAs (miRs-1, -8, -289, -314, and -958) that were significantly downregulated by activity. Neuronal misexpression of three miRNAs (miRs-8, -289, and -958) suppressed activity-dependent synaptic growth suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Functional annotation cluster analysis revealed that putative targets of miRs-8 and -289 are significantly enriched in clusters involved in the control of neuronal processes including axon development, pathfinding, and growth. In support of this, miR-8 regulated the expression of a wingless 3'UTR (wg 3' untranslated region) reporter in vitro. Wg is an important presynaptic regulatory protein required for activity-dependent axon terminal growth at the fly NMJ. In conclusion, our results are consistent with a model where key activity-regulated miRNAs are required to coordinate the expression of genes involved in activity-dependent synaptogenesis.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , MicroARNs/genética , Unión Neuromuscular/genética , Sinapsis/genética , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Perfilación de la Expresión Génica , Ontología de Genes , Larva/genética , Larva/metabolismo , Larva/fisiología , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Sinapsis/metabolismo , Sinapsis/fisiología
3.
J Cell Sci ; 125(Pt 24): 6105-16, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23097047

RESUMEN

The temporal and spatial regulation of protein synthesis plays an important role in the control of neural physiology. In axons and dendrites, translationally repressed mRNAs are actively transported to their destinations in a variety of ribonucleoprotein particles (RNPs). A subset of these neuronal RNPs has been shown to contain proteins associated with mRNA processing bodies (P bodies). P bodies are a class of highly conserved cytoplasmic granules that have been linked to both mRNA decay and translational repression via general and miRNA-mediated pathways. Here, we characterize functions for HPat/Pat1 (also known as Patr-1), a core component of P bodies, at the glutamatergic larval Drosophila neuromuscular junction (NMJ). We show that hpat mutants exhibit a strong synaptic hyperplasia at the NMJ. The synaptic defects observed in hpat mutants are associated with rearrangement of the axonal microtubule cytoskeleton suggesting that HPat negatively regulates presynaptic microtubule-based growth during NMJ development. Consistent with this, overexpression of HPat also blocks the rapid growth of presynaptic boutons induced by spaced depolarization. Finally, we demonstrate that HPat interacts genetically with the catalytic subunit of the deadenylase complex (twin/CCR4) and the miRNA pathway (Argonaute 1) to control bouton formation. We propose that HPat is required to target mRNAs involved in the control of microtubule architecture and synaptic terminal growth for repression, presumably in P bodies, via both general and miRNA-mediated mechanisms.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Unión Neuromuscular/crecimiento & desarrollo , Terminales Presinápticos/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Proteínas Portadoras/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Proteínas de Unión al ARN/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA