Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4641, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941151

RESUMEN

Marsh vegetation, a definitive component of delta ecosystems, has a strong effect on sediment retention and land-building, controlling both how much sediment can be delivered to and how much is retained by the marsh. An understanding of how vegetation influences these processes would improve the restoration and management of marshes. We use a random displacement model to simulate sediment transport, deposition, and resuspension within a marsh. As vegetation density increases, velocity declines, which reduces sediment supply to the marsh, but also reduces resuspension, which enhances sediment retention within the marsh. The competing trends of supply and retention produce a nonlinear relationship between sedimentation and vegetation density, such that an intermediate density yields the maximum sedimentation. Two patterns of sedimentation spatial distribution emerge in the simulation, and the exponential distribution only occurs when resuspension is absent. With resuspension, sediment is delivered farther into the marsh and in a uniform distribution. The model was validated with field observations of sedimentation response to seasonal variation in vegetation density observed in a marsh within the Mississippi River Delta.


Asunto(s)
Ecosistema , Humedales , Ríos
2.
Sci Rep ; 11(1): 8644, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883607

RESUMEN

Wood is an integral part of a river ecosystem and the number of restoration projects using log placements is increasing. Physical model tests were used to explore how the wood position and submergence level (discharge) affect wake structure, and hence the resulting habitat. We observed a von-Kármán vortex street (VS) for emergent logs placed at the channel center, while no VS formed for submerged logs, because the flow entering the wake from above the log (sweeping flow) inhibited VS formation. As a result, emergent logs placed at the channel center resulted in ten times higher turbulent kinetic energy compared to submerged logs. In addition, both spatial variation in time-mean velocity and turbulence level increased with increasing log length and decreasing submergence level. Submerged logs and logs placed at the channel side created a greater velocity deficit and a longer recirculation zone, both of which can increase the residence time in the wake and deposition of organic matter and nutrients. The results demonstrate that variation in log size and degree of submergence can be used as a tool to vary habitat suitability for different fish preferences. To maximize habitat diversity in rivers, we suggest a diverse large wood placement.

3.
Sci Rep ; 7(1): 6587, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747758

RESUMEN

While studies on vegetated channel flows have been developed in many research centers, studies on jets interacting with vegetation are still rare. This study presents and analyzes turbulent jets issued into an obstructed cross-flow, with emergent vegetation simulated with a regular array of cylinders. The paper presents estimates of the turbulence diffusion coefficients and the main turbulence variables of jets issued into a vegetated channel flow. The experimental results are compared with jets issued into unobstructed cross-flow. In the presence of the cylinder array, the turbulence length-scales in the streamwise and transverse directions were reduced, relative to the unobstructed crossflow. This contributed to a reduction in streamwise turbulent diffusion, relative to the unobstructed conditions. In contrast, the transverse turbulent diffusion was enhanced, despite the reduction in length-scale, due to enhanced turbulent intensity and the transverse deflection of flow around individual cylinders. Importantly, in the obstructed condition, the streamwise and transverse turbulent diffusion coefficients are of the same order of magnitude.

4.
Phys Rev Lett ; 111(16): 164501, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24182270

RESUMEN

Surface-piercing vegetation often captures particles that flow on the water surface, where surface tension forces contribute to capture. Yet the physics of capillary capture in flow has not been addressed. Here we model the capture of floating particles by surface-piercing collectors at moderately low Reynolds numbers (Re<10). We find a trade-off between the capillary force, which increases with the collector diameter, and the relative size of the meniscus, which decreases with the collector diameter, resulting in an optimal collector diameter of ~1-10 mm that corresponds to the regime in which many aquatic plant species operate. For this diameter range the angular distribution of capture events is nearly uniform and capture can be orders of magnitude more efficient than direct interception, showing that capillary forces can be major contributors to the capture of seeds and particulate matter by organisms.


Asunto(s)
Organismos Acuáticos/química , Modelos Biológicos , Modelos Químicos , Plantas/química , Agua/química , Animales , Anopheles/química , Acción Capilar , Carex (Planta)/química , Ecosistema , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA