Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21611, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39294196

RESUMEN

Plant-mediated synthesis of nanoparticles is a sustainable approach that has gained widespread scientific acceptance due to its numerous benefits and applications. In this study, a zinc oxide-doped activated carbon (ZAC) derived from palm kernel shells (PKS) was synthesized via a bioreduction route using a water-based extract of Nymphaea lotus leaves as a reducing agent. The synthesized ZAC nanocomposites were characterized using microscopic (TEM, SEM) and spectroscopic (FTIR, EDS, XRD, and UV-Vis) analyses. The adsorptive properties of ZAC and efficiency in scavenging a phenothiazine derivative (methylene blue) from an aqueous solution were investigated. Results reveal that nano-scale ZAC particles were crystalline, exhibited irregular shapes, with an average size of 45 nm, and were highly dispersed. The optimum quantity adsorbed was 248 mg/g at a methylene blue concentration of 140 mg/L for 60 min using 0.02 g/100 mL of ZAC. Adsorption and kinetics data closely aligned with the Freundlich isotherm and the pseudo-second-order model, respectively indicating heterogeneous surface adsorption and chemisorption as the dominant mechanisms. The regeneration study of ZAC shows that over five cycles, thermal regeneration maintained high adsorption capacity with minimal decline and chemical regeneration significantly led to reduction in the adsorption capacity but solvent washing offered a balance between efficacy and structural preservation.

2.
Materials (Basel) ; 14(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34501100

RESUMEN

In this study, the use of ultra-violet (UV) light with or without iron oxide nanoparticles (IONPs) for the degradation of synthetic petroleum wastewater was investigated. The IONPs was synthesised by sodium borohydride reduction of ferric chloride solution and was characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), x-ray fluorescence spectrophotometry (XRF), and energy dispersive spectroscopy (EDS). The amount of degradation was evaluated by chemical oxygen demand (COD) determination. Experimental results show that the COD removal from synthetic petroleum wastewater by IONPs/UV system was more effective than they were independently. The combination of UV light at a wavelength of 254 nm, pH of 8, and 1.0 g of IONPs resulted in COD removal from 10.5% up to 95.5%. The photocatalytic degradation of synthetic petroleum wastewater is about 1.3-2.0 times faster in comparison to UV light only. The removal of COD from synthetic petroleum wastewater by UV light and IONPs follows the pseudo-first-order kinetic model with rate constant k ranging from 0.0133 min-1 to 0.0269 min-1. Consequently, this study has shown that the use of UV light in the presence of IONPs is favourable and effective for the removal of organic pollutants from petroleum refinery wastewater.

3.
Langmuir ; 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34228925

RESUMEN

In this study, a magnetic generation-5 polyamidoamine (G-5 PAMAM) dendrimer-functionalized SBA-15 (mPSBA) composite was synthesized by coupling amine-functionalized silica (SBA-15-NH2) and amine-functionalized magnetic nanoparticles (MNP-NH2) with the G-5 PAMAM, before characterization and aqueous sorption of As(III), Cd(II), tetracycline, and ciprofloxacin using the composite. The mPSBA characterization data exhibited the typical Si-O-Si infrared peaks from the SBA-15 backbone in addition to the acquired characteristic infrared Fe-O and amide-I/II peaks from the MNP and G-5 PAMAM dendrimers, respectively. Postsorption infrared spectra showing shifts for the amide-linked groups indicated the likely points of contaminant attachment on the composite. Its thermal stability was lower than that of SBA-15 but higher than that of SBA-15-NH, while the XRD diffractograms of the backbone SBA-15-NH and MNP were unchanged in the final composite. The mPSBA composite was a better As(III) and Cd(II) adsorbent than SBA-15 by ≈400 and 140%, respectively, with rapid uptake in the first 60 min and equilibrium achieved at 120 min. Sorption was enhanced with increasing pH (until pHpzc) and initial contaminant concentration. The process was spontaneous and endothermic; thus, increasing ambient temperature enhanced Cd(II) sorption. The sorption data fitted better to the homogeneous fractal pseudo-second-order (FPSO) kinetics model and the Brouers-Sotolongo fractal adsorption isotherm models, indicating complex sorption interactions and pore-filling/contaminant trapping within mPSBA. Further experiments using mPSBA for the uptake of tetracycline and ciprofloxacin showed 679% and 325% higher sorption, respectively, compared with that for SBA-15-NH. In addition to the added advantage of easy removal from solution/treated water after the adsorption process, mPSBA sorption capacities for these studied contaminants [As(III): 23.3 mg/g; Cd(II): 74.5 mg/g; tetracycline: 38.4 mg/g; ciprofloxacin: 23.0 mg/g] are better than those of several advanced adsorbents reported in the literature.

4.
Ultrason Sonochem ; 47: 29-35, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29908604

RESUMEN

In this study, nano iron (nano-Fe) was successfully synthesized by sodium borohydride reduction of ferric chloride solution to enhance the ultrasonic degradation of phenolsulfonphthalein (PSP). The nano-Fe was characterized by scanning electron microscopy - energy dispersive spectroscopy (SEM-EDX), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), attenuated total reflection - Fourier transform infrared spectroscopy (ATR-FTIR), and Brunauer, Emmett and Teller (BET) surface area determination. Experimental results demonstrated that a combined ultrasonic/nano-Fe/H2O2 system was more effective for PSP removal in combination than they were individually and there was a significant difference between the combined and single processes. The ultrasonic/nano-Fe/H2O2 degradation follows the Langmuir-Hinshelwood (L-H) kinetic model. The addition of nano-Fe and H2O2 to the ultrasonic reactor greatly accelerated the degradation of PSP (25 mg/L) from 12.5% up to 96.5%. These findings indicated that ultrasonic degradation in the presence of nano-Fe and H2O2 is a promising and efficient technique for the elimination of emerging micropollutants from aqueous solution.

5.
J Water Health ; 15(6): 1015-1027, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29215363

RESUMEN

The application of nano-TiO2 as adsorbent combined with ultrasound for the degradation of N-acetyl-para-aminophenol (AAP) from aqueous solution was investigated. The nano-TiO2 was characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Experimental results revealed that the adsorption of AAP by nano-TiO2 fitted the pseudo-second-order kinetic model, the equilibrium could be explained by the Freundlich isotherm and the treatment process is exothermic. The optimum removal efficiency of AAP (128.89 mg/g (77.33%)) was achieved at pH 4 when 0.03 g of nano-TiO2 was mixed with 50 mL of 100 mg/L AAP aqueous solution at ambient temperature, 60 min contact time, and a stirring speed of 120 rpm. Ultrasound at 20 kHz and pH 3 was favorable and it resulted in 52.61% and 57.43% removal efficiency with and without the addition of nano-TiO2, respectively. The degradation of AAP by ultrasound followed by nano-TiO2 treatment resulted in approximately 99.50% removal efficiency. This study showed that a sequential ultrasound and nano-TiO2 treatment process could be employed for the removal of AAP or other emerging water and wastewater contaminants.


Asunto(s)
Acetaminofén/química , Nanopartículas del Metal/química , Titanio/química , Ultrasonido , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Cinética
6.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 1): m206-7, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-21200554

RESUMEN

In the title compound, [PdCl(2)(C(5)H(8)N(2))(C(12)H(12)N(2)O)], the Pd atom adopts a slightly distorted trans-PdCl(2)N(2) square-planar arrangement. The different Pd-N bond lengths can be related to the the electron-withdrawing effect of the o-toluoyl group on the substituted pyrazole ligand. The complex crystallizes as centrosymmetric hydrogen-bonded dimers through N-H⋯Cl linkages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA