Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Stem Cell Res Ther ; 15(1): 288, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256816

RESUMEN

BACKGROUND: Mesenchymal stromal cell (MSC) therapy holds great potential yet efficacy and safety concerns with cell therapy persist. The beneficial effects of MSCs are often attributed to their secretome that includes extracellular vesicles (EVs). EVs carry biologically active molecules, protected by a lipid bilayer. However, several barriers hinder large-scale MSC EV production. A serum-free culturing approach is preferred for producing clinical-grade MSC-derived EVs but this can affect both yield and purity. Consequently, new strategies have been explored, including genetically engineering MSCs to alter EV compositions to enhance potency, increase circulation time or mediate targeting. However, efficient transfection of MSCs is challenging. Typical sources of MSC include adipose tissue and bone marrow, which both require invasive extraction procedures. Here, we investigate the use of urine-derived stem cells (USCs) as a non-invasive and inexhaustible source of MSCs for EV production. METHODS: We isolated, expanded, and characterized urine-derived stem cells (USCs) harvested from eight healthy donors at three different time points during the day. We evaluated the number of clones per urination, proliferation capacity and conducted flow cytometry to establish expression of surface markers. EVs were produced in chemically defined media and characterized. PEI/DNA transfection was used to genetically engineer USCs using transposon technology. RESULTS: There were no differences between time points for clone number, doubling time or viability. USCs showed immunophenotypic characteristics of MSCs, such as expression of CD73, CD90 and CD105, with no difference at the assessed time points, however, male donors had reduced CD73 + cells. Expanded USCs were incubated without growth factors or serum for 72 h without a loss in viability and EVs were isolated. USCs were transfected with high efficiency and after 10 days of selection, pure engineered cell cultures were established. CONCLUSIONS: Isolation and expansion of MSCs from urine is non-invasive, robust, and without apparent sex-related differences. The sampling time point did not affect any measured markers or USC isolation potential. USCs offer an attractive production platform for EVs, both native and engineered.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Orina , Humanos , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Orina/citología , Masculino , Femenino , Células Cultivadas , Adulto , Proliferación Celular , Persona de Mediana Edad , Diferenciación Celular
2.
Front Cell Dev Biol ; 12: 1456416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234562

RESUMEN

Renal fibrosis, characterized by excessive extracellular matrix accumulation, leads to a progressive decline of renal function and is a common endpoint of chronic kidney disease (CKD). Current treatments primarily focus on managing underlying diseases, offering limited direct intervention for the fibrotic process. This study explores the anti-fibrotic potential of human adipose-derived mesenchymal stromal cells (MSCs) and their derived extracellular vesicles (EVs) in the context of CKD, emphasizing the effects of systemic versus local delivery methods. Preconditioned MSCs (Pr-MSCs) were treated with TNF-α and IFN-γ to enhance their immunomodulatory capabilities, and demonstrated significant anti-fibrotic effects in vitro, reducing mRNA expression of fibrosis markers in TGF-ß stimulated HKC-8 cells. Our in vivo findings from a murine unilateral ureteral obstruction (UUO) model of CKD showed that local deliveries of Pr-MSCs reduced collagen deposition and increased expression of the anti-inflammatory cytokine IL-10. Systemic administration of Pr-MSCs did not show any significant effect on UUO-induced injury. In addition, EVs did not replicate the anti-fibrotic effects observed with their parent cells, suggesting that soluble proteins or metabolites secreted by Pr-MSCs might be the primary mediators of the anti-fibrotic and immunomodulatory effects. This study provides critical insights into the therapeutic efficacy of MSCs, highlighting the importance of delivery methods and the potential of preconditioning strategies in enhancing MSC-based therapies for renal fibrosis.

3.
Int J Parasitol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116918

RESUMEN

The intestinal helminth Ascaris lumbricoides infects over 800 million people. Infections are often chronic and immunity is not sterilizing due to host-immune modulation, therefore reinfection is common after antihelmintic treatment. We have previously demonstrated a role for Ascaris spp. extracellular vesicles (EVs) in host immune modulation but whether EVs are recognized by the adaptive immune system and are present systemically in the host remains unknown. Therefore, we employed a well-established trickle infection model in pigs to mimic natural Ascaris infection in humans. EVs were isolated from adult Ascaris suum followed by immunoblotting of EV and EV-depleted secretory fractions using plasma from infected and uninfected pigs. Next, EVs were isolated from pig plasma at day 56 post first infection and subjected to deep small RNAseq analysis. RNAs were aligned to A. suum and Sus scrofa miRNA complements to detect A. suum EVs and elucidate the host EV micro RNA (miRNA) response to infection, respectively. Infection generates robust antibody responses against A. suum EVs that is distinct from EV-depleted fractions. However, A. suum miRNAs were not detectable in EVs from the peripheral blood. Notably, host plasma-derived EV miRNA profiles showed significant changes between infected and uninfected pigs, indicating that Ascaris infection drives systemic changes in host EV composition.

4.
iScience ; 27(9): 110614, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39211578

RESUMEN

In this study, we assessed the quality of de novo genome assemblies for three species of parasitic nematodes (Brugia malayi, Trichuris trichiura, and Ancylostoma caninum) generated using only Oxford Nanopore Technologies MinION data. Assemblies were compared to current reference genomes and against additional assemblies that were supplemented with short-read Illumina data through polishing or hybrid assembly approaches. For each species, assemblies generated using only MinION data had similar or superior measures of contiguity, completeness, and gene content. In terms of gene composition, depending on the species, between 88.9 and 97.6% of complete coding sequences predicted in MinION data only assemblies were identical to those predicted in assemblies polished with Illumina data. Polishing MinION data only assemblies with Illumina data therefore improved gene-level accuracy to a degree. Furthermore, modified DNA extraction and library preparation protocols produced sufficient genomic DNA from B. malayi and T. trichiura to generate de novo assemblies from individual specimens.

5.
Int J Parasitol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209212

RESUMEN

In tropical and subtropical regions, soil-transmitted helminth (STH) infections such as Ascaris lumbricoides, Trichuris trichiura, and hookworms have a significant impact on public health. Globally, A. lumbricoides infects approximately 0.8 billion people, while T. trichiura infects around 500 million. This study involved a comparison of three diagnostic methods, Kato-Katz and two flotation methods (concentration McMaster, and simple McMaster), for the detection of Ascaris and Trichuris in human faeces. We conducted a comparison of the number of eggs in faeces (or faecal egg counts (FECs)) obtained with these methods using freshly collected samples that were positive for T. trichiura and spiked with a known quantity of Ascaris sp. eggs. Additionally, for the concentration McMaster method we assessed FECs after storing the samples at 5 °C for up to 21 days. The concentration McMaster method demonstrated superiority over the simple McMaster method in terms of higher detection levels for both helminths, while the Kato-Katz method yielded FEC values very close to the 'true' spiking values. Importantly, the concentration McMaster method was considerably easier to read compared with the Kato-Katz method, and it allowed for sample storage at 5 °C for up to 14 days without affecting FEC results. Consequently, we conclude that the concentration McMaster method is an effective and user-friendly alternative for diagnosis of Ascaris and Trichuris infections in humans. Furthermore, it offers the advantage of sample storage before analysis, enhancing flexibility in the workflow.

6.
Parasit Vectors ; 17(1): 225, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755679

RESUMEN

BACKGROUND: The giant roundworm Ascaris is an intestinal nematode, causing ascariasis by infecting humans and pigs worldwide. Recent estimates suggest that Ascaris infects over half a billion people, with chronic infections leading to reduced growth and cognitive ability. Ascariasis affects innumerable pigs worldwide and is known to reduce production yields via decreased growth and condemnation of livers. The predominant anthelminthic drugs used to treat ascariasis are the benzimidazoles. Benzimidazoles interact with ß-tubulins and block their function, and several benzimidazole resistance-associated mutations have been described in the ß-tubulins of ruminant nematodes. Recent research on ascarids has shown that these canonical benzimidazole resistance-associated mutations are likely not present in the ß-tubulins of Ascaris, Ascaridia or Parascaris, even in phenotypically resistant populations. METHODS: To further determine the putative absence of key ß-tubulin polymorphisms, we screened two ß-tubulin isotypes of Ascaris, highly expressed in adult worms. Using adult and egg samples of Ascaris obtained from pigs and humans worldwide, we performed deep amplicon sequencing to look for canonical resistance-associated mutations in Ascaris ß-tubulins. Subsequently, we examined these data in closer detail to study the population dynamics of Ascaris and genetic diversity within the two isotypes and tested whether genotypes appeared to partition across human and pig hosts. RESULTS: In the 187 isolates, 69 genotypes were found, made up of eight haplotypes of ß-tubulin isotype A and 20 haplotypes of isotype B. Single nucleotide polymorphisms were seen at 14 and 37 positions for ß-tubulin isotype A and isotype B, respectively. No evidence of any canonical benzimidazole resistance-associated mutations was found in either human- or pig-derived Ascaris isolates. There was, however, a difference in the genetic diversity of each isotype and distribution of ß-tubulin genotypes between human- and pig-derived Ascaris. Statistical tests of population differentiation show significant differences (p < 0.001) between pig- and human-derived worms; however, more diversity was seen between worms from different populations than worms from different hosts. CONCLUSIONS: Our work suggests an absence of canonical ß-tubulin mutations within Ascaris, but alternative modes of anthelminthic resistance may emerge necessitating continued genetic scrutiny alongside monitoring of drug efficacy.


Asunto(s)
Antihelmínticos , Ascariasis , Ascaris , Bencimidazoles , Resistencia a Medicamentos , Mutación , Tubulina (Proteína) , Tubulina (Proteína)/genética , Animales , Bencimidazoles/farmacología , Resistencia a Medicamentos/genética , Ascariasis/parasitología , Ascariasis/veterinaria , Ascariasis/tratamiento farmacológico , Antihelmínticos/farmacología , Porcinos , Ascaris/genética , Ascaris/efectos de los fármacos , Humanos , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/tratamiento farmacológico
7.
NPJ Precis Oncol ; 8(1): 103, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760427

RESUMEN

Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.

8.
Front Immunol ; 15: 1328401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481989

RESUMEN

Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.


Asunto(s)
Cistatinas , Monocitos , Humanos , Animales , Ratones , Ascaris lumbricoides , Ácido Mevalónico/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Inflamación/metabolismo , Inmunidad , Células Dendríticas , ARN/metabolismo
9.
Adv Parasitol ; 123: 51-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38448148

RESUMEN

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Asunto(s)
Antihelmínticos , Zoonosis , Animales , Humanos , Zoonosis/prevención & control , Caenorhabditis elegans , Academias e Institutos , Investigación , Antihelmínticos/uso terapéutico
10.
Eur J Clin Microbiol Infect Dis ; 43(3): 587-596, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38261158

RESUMEN

BACKGROUND: Over a billion people are infected with Toxocara canis or T. cati, the roundworms of dogs and cats. Historically, T. canis has been considered the main species responsible for human toxocarosis, but as serodiagnosis cannot discriminate between the two species, this remains unresolved. We used pigs as a relevant large animal model for human infection to assess the migratory pattern of T. cati and T. canis. METHODS: Pigs were inoculated with T. cati or T. canis eggs or PBS (negative controls) and necropsied 14 or 31 days later. Different organs and tissues were examined for parasites and pathological changes. RESULTS: Overall, the two parasite species had a similar migration pattern reaching multiple organs and tissues, including the mesenteric lymph nodes, liver, lungs, and diaphragm. We recovered larvae of both species in the brain, suggesting that T. cati also can cause neurological toxocarosis in humans. Both species induced systemic eosinophilia and histopathological changes in the lungs, livers, and mesenteric lymph nodes. CONCLUSION: This study emphasises the importance of T. cati as a zoonotic agent and the need to develop diagnostic methods that can differentiate between sources of infection in humans.


Asunto(s)
Toxocara canis , Toxocariasis , Animales , Humanos , Porcinos , Toxocara , Toxocariasis/diagnóstico , Toxocariasis/parasitología , Toxocariasis/patología
12.
Cell Commun Signal ; 21(1): 297, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864211

RESUMEN

BACKGROUND: E. coli O83 (Colinfant Newborn) is a Gram-negative (G-) probiotic bacterium used in the clinic. When administered orally, it reduces allergic sensitisation but not allergic asthma. Intranasal administration offers a non-invasive and convenient delivery method. This route bypasses the gastrointestinal tract and provides direct access to the airways, which are the target of asthma prevention. G- bacteria such as E. coli O83 release outer membrane vesicles (OMVs) to communicate with the environment. Here we investigate whether intranasally administered E. coli O83 OMVs (EcO83-OMVs) can reduce allergic airway inflammation in mice. METHODS: EcO83-OMVs were isolated by ultracentrifugation and characterised their number, morphology (shape and size), composition (proteins and lipopolysaccharide; LPS), recognition by innate receptors (using transfected HEK293 cells) and immunomodulatory potential (in naïve splenocytes and bone marrow-derived dendritic cells; BMDCs). Their allergy-preventive effect was investigated in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS: EcO83-OMVs are spherical nanoparticles with a size of about 110 nm. They contain LPS and protein cargo. We identified a total of 1120 proteins, 136 of which were enriched in OMVs compared to parent bacteria. Proteins from the flagellum dominated. OMVs activated the pattern recognition receptors TLR2/4/5 as well as NOD1 and NOD2. EcO83-OMVs induced the production of pro- and anti-inflammatory cytokines in splenocytes and BMDCs. Intranasal administration of EcO83-OMVs inhibited airway hyperresponsiveness, and decreased airway eosinophilia, Th2 cytokine production and mucus secretion. CONCLUSIONS: We demonstrate for the first time that intranasally administered OMVs from probiotic G- bacteria have an anti-allergic effect. Our study highlights the advantages of OMVs as a safe platform for the prophylactic treatment of allergy. Video Abstract.


Asunto(s)
Asma , Vesículas Extracelulares , Hipersensibilidad , Probióticos , Humanos , Animales , Ratones , Escherichia coli , Lipopolisacáridos , Células HEK293 , Hipersensibilidad/prevención & control , Hipersensibilidad/metabolismo , Inmunidad Innata , Asma/metabolismo , Inflamación/metabolismo , Vesículas Extracelulares/metabolismo , Probióticos/farmacología
13.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37738244

RESUMEN

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Asunto(s)
Microbiota , Trichuris , Ratones , Animales , Microscopía Electrónica de Rastreo , Bacterias , Larva , Óvulo , Mamíferos
14.
J Antibiot (Tokyo) ; 76(6): 360-364, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37016014

RESUMEN

Polymyxin B (PMB) is a peptide based antibiotic that binds the lipid A moiety of lipopolysaccharide (LPS) with a resultant bactericidal effect. The interaction of PMB with LPS presented on outer membrane vesicles (OMVs) is not fully known, however, a sacrificial role of OMVs in protecting bacterial cells by sequestering PMB has been described. Here we assess the ability of PMB to neutralize the immune-stimulatory properties of OMVs whilst modulating the uptake of OMVs in human immune cells. We show for the first time that PMB increases immune cell uptake of Escherichia coli derived OMVs whilst inhibiting TNF and IL-1ß production. Therefore, we present a potential new role for PMB in the neutralization of OMVs via LPS masking and increased immune cell uptake.


Asunto(s)
Escherichia coli , Polimixina B , Humanos , Polimixina B/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Antibacterianos/farmacología , Péptidos/farmacología
15.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993552

RESUMEN

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris . Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Although unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs, egg hatching was most efficient in the presence of bacteria that bound poles with high density such as Staphylococcus aureus . Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.

16.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604533

RESUMEN

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Asunto(s)
Vesículas Extracelulares , Helmintos , Animales , Humanos , Vesículas Extracelulares/fisiología , Reproducibilidad de los Resultados , Mamíferos
17.
PLoS Negl Trop Dis ; 16(8): e0010709, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984809

RESUMEN

BACKGROUND: Infections with Ascaris lumbricoides and Trichuris trichiura remain significant contributors to the global burden of neglected tropical diseases. Infection may in particular affect child development as they are more likely to be infected with T. trichiura and/or A. lumbricoides and to carry higher worm burdens than adults. Whilst the impact of heavy infections are clear, the effects of moderate infection intensities on the growth and development of children remain elusive. Field studies are confounded by a lack of knowledge of infection history, nutritional status, presence of co-infections and levels of exposure to infective eggs. Therefore, animal models are required. Given the physiological similarities between humans and pigs but also between the helminths that infect them; A. suum and T. suis, growing pigs provide an excellent model to investigate the direct effects of Ascaris spp. and Trichuris spp. on weight gain. METHODS AND RESULTS: We employed a trickle infection protocol to mimic natural co-infection to assess the effect of infection intensity, determined by worm count (A. suum) or eggs per gram of faeces (A. suum and T. suis), on weight gain in a large pig population (n = 195) with variable genetic susceptibility. Pig body weights were assessed over 14 weeks. Using a post-hoc statistical approach, we found a negative association between weight gain and T. suis infection. For A. suum, this association was not significant after adjusting for other covariates in a multivariable analysis. Estimates from generalized linear mixed effects models indicated that a 1 kg increase in weight gain was associated with 4.4% (p = 0.00217) decrease in T. suis EPG and a 2.8% (p = 0.02297) or 2.2% (p = 0.0488) decrease in A. suum EPG or burden, respectively. CONCLUSIONS: Overall this study has demonstrated a negative association between STH and weight gain in growing pigs but also that T. suis infection may be more detrimental that A. suum on growth.


Asunto(s)
Ascariasis , Enfermedades de los Porcinos , Tricuriasis , Animales , Ascariasis/complicaciones , Ascariasis/epidemiología , Ascariasis/veterinaria , Niño , Heces/parasitología , Humanos , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/parasitología , Tricuriasis/complicaciones , Tricuriasis/epidemiología , Tricuriasis/veterinaria , Trichuris/fisiología , Aumento de Peso
19.
Nat Commun ; 13(1): 3888, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794092

RESUMEN

The neglected tropical disease trichuriasis is caused by the whipworm Trichuris trichiura, a soil-transmitted helminth that has infected humans for millennia. Today, T. trichiura infects as many as 500 million people, predominantly in communities with poor sanitary infrastructure enabling sustained faecal-oral transmission. Using whole-genome sequencing of geographically distributed worms collected from human and other primate hosts, together with ancient samples preserved in archaeologically-defined latrines and deposits dated up to one thousand years old, we present the first population genomics study of T. trichiura. We describe the continent-scale genetic structure between whipworms infecting humans and baboons relative to those infecting other primates. Admixture and population demographic analyses support a stepwise distribution of genetic variation that is highest in Uganda, consistent with an African origin and subsequent translocation with human migration. Finally, genome-wide analyses between human samples and between human and non-human primate samples reveal local regions of genetic differentiation between geographically distinct populations. These data provide insight into zoonotic reservoirs of human-infective T. trichiura and will support future efforts toward the implementation of genomic epidemiology of this globally important helminth.


Asunto(s)
Tricuriasis , Trichuris , Animales , Estudio de Asociación del Genoma Completo , Humanos , Metagenómica , Filogenia , Primates/genética , Tricuriasis/epidemiología , Trichuris/genética
20.
Cytokine ; 156: 155919, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35649322

RESUMEN

Regulation of macrophage (Mɸ) function can maintain tissue homeostasis and control inflammation. Parasitic worms (helminths) are potent modulators of host immune and inflammatory responses. They have evolved various strategies to promote immunosuppression, including redirecting phagocytic cells toward a regulatory phenotype. Although soluble products from the whipworm Trichuris suis (TSPs) have shown significant effects on Mɸ function, the mechanisms underlying these modulatory effects are still not well understood. In this study, we find that TSPs suppressed inflammatory cytokines (TNF and IL-6) in Mɸs stimulated with a broad panel of TLR agonists, whilst inducing IL-10. Moreover, M1 markers such as MHCII, CD86, iNOS, and TNF were downregulated in TSP-treated Mɸs, without polarizing them towards an M2-like phenotype. We showed that TSPs could establish a suppressed activation state of Mɸs lasting at least for 72 h, indicating an anti-inflammatory innate training. Moreover, we found that TSPs, via repression of intracellular TNF generation, decreased its secretion rather than interfering with the release of surface-bound TNF. Metabolic analysis showed that TSPs promote oxidative phosphorylation (OXPHOS) without affecting glycolytic rate. Collectively, these findings expand our knowledge on helminth-induced immune modulation and support future investigations into the anti-inflammatory properties of TSPs for therapeutic purposes.


Asunto(s)
Tricuriasis , Trichuris , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Citocinas/metabolismo , Macrófagos/metabolismo , Tricuriasis/metabolismo , Tricuriasis/parasitología , Trichuris/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA