Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6706): 322-327, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38963876

RESUMEN

One of Earth's most fundamental climate shifts, the greenhouse-icehouse transition 34 million years ago, initiated Antarctic ice sheet buildup, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7 to 33.2 million years ago) that immediately followed this transition-a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization-is uncertain. In this work, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica's Pacific margin-a key region for understanding Antarctic ice sheet evolution. These data indicate a cool-temperate environment with mild ocean and air temperatures that prevented West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change.

2.
Sci Rep ; 8(1): 7703, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769577

RESUMEN

Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m-2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA