Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22351, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572734

RESUMEN

The ion beam induced modified gallium doped ZnO thin films are studied for their gas sensing applications. The Ag9+ and Si6+ irradiated gallium doped zinc oxide thin films were exposed to various concentrations of ethanol and acetone gas for gas sensing applications. The Ag9+ ion irradiated Ga-doped ZnO thin was optimized at different operating temperature. It was observed that gas sensing response for both ethanol and acetone gas increases with increasing Ag9+ ion fluence. This indicates that the swift heavy ions have improved the sensitivity of Ga-doled ZnO thin film by reducing the particle size. The Si6+ ion irradiated Ga-doped ZnO thin films were also exposed to ethanol and acetone gas for gas sensing applications. In comparison to Ag9+ ion irradiated thin film, the film irradiated with Si6+ ion beam exhibits a greater sensing response to both ethanol and acetone gas.

2.
ACS Omega ; 6(17): 11660-11668, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056321

RESUMEN

The high thermal conductivity, high electron mobility, the direct wide band gap, and large exciton binding energy of zinc oxide (ZnO) make it appropriate for a wide range of device applications like light-emitting diodes, photodetectors, laser diodes, transparent thin-film transistors, and so forth. Among the semiconductor metal oxides, zinc oxide (ZnO) is one of the most commonly used gas-sensing materials. The gas sensor made of nanocomposite ZnO and Ga-doped ZnO (ZnO:Ga) thin films was developed by the sol-gel spin coating method. The gas sensitivity of gallium-doped ZnO thin films annealed at 400, 700, and 900 °C was studied for ethanol and acetone gases. The variation of electrical resistance of gallium-doped ZnO thin films with exposure of ethanol and acetone vapors at different concentrations was estimated. Ga:ZnO thin films annealed at 700 °C show the highest sensitivity and shortest response and recovery time for both ethanol and acetone gases. This study reveals that the 5 at. % Ga-doped ZnO thin film annealed at 700 °C has the best sensing property in comparison to the film annealed at 400 and 900 °C. The sensing response of ZnO:Ga thin films was found higher for ethanol gas in comparison to acetone gas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA