Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7350, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538742

RESUMEN

Persistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens. Using oligonucleotide conjugated antibodies (Ab-oligo) permitting cyclic immunofluorescence (cyCIF), we present analyses of phenotypes among tumor and peripheral blood hybrid cells. Interestingly, the majority of circulating hybrid cell (CHC) subpopulations were not identified in tumor-associated hybrids. These results highlight the efficacy of ultra-high content phenotypic analyses using Ab-oligo based cyCIF applied to both tumor and peripheral blood specimens. The combination of a multiplex phenotypic profiling platform that is gentle enough to analyze blood to detect and evaluate disseminated tumor cells represents a novel approach to exploring novel tumor biology and potential utility for developing the population as a blood-based biomarker in cancer.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor , Células Híbridas/patología , Anticuerpos , Fenotipo
2.
Sci Rep ; 12(1): 1911, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115587

RESUMEN

Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Neoplasias/terapia , Fotoblanqueo , Análisis de la Célula Individual , Antígenos Thy-1/metabolismo , Muerte Celular , Citotoxicidad Inmunológica , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/inmunología , Neoplasias/patología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante
3.
Sci Rep ; 11(1): 23844, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903759

RESUMEN

A number of highly multiplexed immunostaining and imaging methods have advanced spatial proteomics of cancer for improved treatment strategies. While a variety of methods have been developed, the most widely used methods are limited by harmful signal removal techniques, difficulties with reagent production and antigen sensitivity. Multiplexed immunostaining employing oligonucleotide (oligos)-barcoded antibodies is an alternative approach that is growing in popularity. However, challenges remain in consistent conjugation of oligos to antibodies with maintained antigenicity as well as non-destructive, robust and cost-effective signal removal methods. Herein, a variety of oligo conjugation and signal removal methods were evaluated in the development of a robust oligo conjugated antibody cyclic immunofluorescence (Ab-oligo cyCIF) methodology. Both non- and site-specific conjugation strategies were assessed to label antibodies, where site-specific conjugation resulted in higher retained binding affinity and antigen-specific staining. A variety of fluorescence signal removal methods were also evaluated, where incorporation of a photocleavable link (PCL) resulted in full fluorescence signal removal with minimal tissue disruption. In summary, this work resulted in an optimized Ab-oligo cyCIF platform capable of generating high dimensional images to characterize the spatial proteomics of the hallmarks of cancer.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Neoplasias Experimentales/diagnóstico por imagen , Animales , Anticuerpos/química , Colorantes Fluorescentes/química , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Neoplasias Experimentales/metabolismo , Oligonucleótidos/química
4.
Methods Mol Biol ; 2161: 59-73, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32681506

RESUMEN

We describe the detailed methods of "immunoFISH" to analyze the expression level and the spatial localization of RNA transcripts and proteins on cultured cells and formal-fixed, paraffin-embedded (FFPE) tissue sections. On cultured cells, we detect specific transcripts using the Stellaris fluorescence in situ hybridization (FISH) probes labeled with fluorophores that target multiple regions along the desired transcripts and proteins combining the immunofluorescent staining. On FFPE tissue sections, we use the RNAscope FISH probes, modified branched DNA (bDNA) probes to amplify the RNA signals, followed by immunofluorescent staining for protein detection. The abundance, composition, and spatial distribution are determined by signals from fluorescently labeled proteins and individual transcripts of images acquired using high-resolution fluorescence microscopy.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Animales , Línea Celular Tumoral , Células Cultivadas , Colorantes Fluorescentes/química , Humanos , Hibridación Fluorescente in Situ/normas , Límite de Detección , Proteínas/metabolismo , ARN Mensajero/metabolismo , Coloración y Etiquetado/métodos , Adhesión del Tejido/métodos , Fijación del Tejido/métodos
5.
J Biomed Opt ; 25(5): 1-18, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32445299

RESUMEN

SIGNIFICANCE: Advanced genetic characterization has informed cancer heterogeneity and the challenge it poses to effective therapy; however, current methods lack spatial context, which is vital to successful cancer therapy. Conventional immunolabeling, commonplace in the clinic, can provide spatial context to protein expression. However, these techniques are spectrally limited, resulting in inadequate capacity to resolve the heterogenous cell subpopulations within a tumor. AIM: We developed and optimized oligonucleotide conjugated antibodies (Ab-oligo) to facilitate cyclic immunofluorescence (cyCIF), resulting in high-dimensional immunostaining. APPROACH: We employed a site-specific conjugation strategy to label antibodies with unique oligonucleotide sequences, which were hybridized in situ with their complementary oligonucleotide sequence tagged with a conventional fluorophore. Antibody concentration, imaging strand concentration, and configuration as well as signal removal strategies were optimized to generate maximal staining intensity using our Ab-oligo cyCIF strategy. RESULTS: We successfully generated 14 Ab-oligo conjugates and validated their antigen specificity, which was maintained in single color staining studies. With the validated antibodies, we generated up to 14-color imaging data sets of human breast cancer tissues. CONCLUSIONS: Herein, we demonstrated the utility of Ab-oligo cyCIF as a platform for highly multiplexed imaging, its utility to measure tumor heterogeneity, and its potential for future use in clinical histopathology.


Asunto(s)
Anticuerpos , Colorantes Fluorescentes , Técnica del Anticuerpo Fluorescente , Humanos , Oligonucleótidos , Coloración y Etiquetado
6.
Artículo en Inglés | MEDLINE | ID: mdl-32296256

RESUMEN

Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and identify druggable therapeutic targets. Tyrosine kinase inhibitors (TKI) are a class of drugs seeking to inhibit signaling pathways critical to sustaining proliferative signaling, resisting cell death, and the other hallmarks of cancer. While tumors may initially respond to TKI therapy, disease progression is near universal due to mechanisms of acquired resistance largely involving cellular signaling pathway reprogramming. With the ultimate goal of improved TKI therapeutic efficacy our group has developed intracellular paired agent imaging (iPAI) to quantify drug target interactions and oligonucleotide conjugated antibody (Ab-oligo) cyclic immunofluorescence (cycIF) imaging to characterize perturbed signaling pathways in response to therapy. iPAI uses spectrally distinct, fluorescently labeled targeted and untargeted drug derivatives, correcting for non-specific drug distribution and facilitating quantitative assessment of the drug binding before and after therapy. Ab-oligo cycIF exploits in situ hybridization of complementary oligonucleotides for biomarker labeling while oligonucleotide modifications facilitate signal removal for sequential rounds of fluorescent tagging and imaging. Ab-oligo CycIF is capable of generating extreme multi-parametric images for quantifying total and phosphorylated protein expression to quantify protein activation, expression, and spatial distribution. Together iPAI and Ab-oligo cycIF can be applied to interrogate drug uptake and target binding as well as changes to heterogenous cell populations within tumors that drive variable therapeutic responses in patients.

7.
J Vis Exp ; (147)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31180341

RESUMEN

Understanding the impact of the microenvironment on the phenotype of cells is a difficult problem due to the complex mixture of both soluble growth factors and matrix-associated proteins in the microenvironment in vivo. Furthermore, readily available reagents for the modeling of microenvironments in vitro typically utilize complex mixtures of proteins that are incompletely defined and suffer from batch to batch variability. The microenvironment microarray (MEMA) platform allows for the assessment of thousands of simple combinations of microenvironment proteins for their impact on cellular phenotypes in a single assay. The MEMAs are prepared in well plates, which allows the addition of individual ligands to separate wells containing arrayed extracellular matrix (ECM) proteins. The combination of the soluble ligand with each printed ECM forms a unique combination. A typical MEMA assay contains greater than 2,500 unique combinatorial microenvironments that cells are exposed to in a single assay. As a test case, the breast cancer cell line MCF7 was plated on the MEMA platform. Analysis of this assay identified factors that both enhance and inhibit the growth and proliferation of these cells. The MEMA platform is highly flexible and can be extended for use with other biological questions beyond cancer research.


Asunto(s)
Análisis por Micromatrices/métodos , Neoplasias/patología , Microambiente Tumoral , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ligandos , Células MCF-7 , Neoplasias/metabolismo , Fenotipo
8.
Artículo en Inglés | MEDLINE | ID: mdl-32280155

RESUMEN

Successful cancer treatment continues to elude modern medicine and its arsenal of therapeutic strategies. Therapy resistance is driven by significant tumor heterogeneity, complex interactions between malignant, microenvironmental and immune cells and cross talk between signaling pathways. Advances in molecular characterization technologies such as next generation sequencing have helped unravel this network of interactions and have vastly affected how cancer is diagnosed and treated. However, the translation of complex genomic analyses to pathological diagnosis remains challenging using conventional immunofluorescence (IF) staining, which is typically limited to 2-5 antigens. Numerous strategies to increase distinct antigen detection on a single sample have been investigated, but all have deleterious effects on the tissue limiting the maximum number of biomarkers that can be imaged on a single sample and none can be seamlessly integrated into routine clinical workflows. To facilitate ready integration into clinical histopathology, we have developed a novel cyclic IF (cycIF) technology based on antibody conjugated oligonucleotides (Ab-oligos). In situ hybridization of complementary oligonucleotides (oligos) facilitates biomarker labeling for imaging on any conventional fluorescent microscope. We have validated a variety of oligo configurations and their respective signal removal strategies capable of diminishing fluorescent signal to levels of autofluorescence before subsequent staining cycles. Robust signal removal is performed without the employment of harsh conditions or reagents, maintaining tissue integrity and antigenicity for higher dimensionality immunostaining of a single sample. Our platform Ab-oligo cycIF technology uses conventional fluorophores and microscopes, allowing for dissemination to a broad audience and congruent integration into clinical histopathology workflows.

9.
Sci Rep ; 8(1): 4590, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29545600

RESUMEN

Multicolor microscopy tools necessary to localize and visualize the complexity of subcellular systems are limited by current fluorophore technology. While commercial fluorophores cover spectral space from the ultraviolet to the near infrared region and are optimized for conventional bandpass based fluorescence microscopy, they are not ideal for highly multiplexed fluorescence microscopy as they tend to have short Stokes shifts, restricting the number of fluorophores that can be detected in a single sample to four to five. Herein, we synthesized a library of 95 novel boron-dipyrromethene (BODIPY)-based fluorophores and screened their photophysical, optical and spectral properties for their utility in multicolor microscopy. A subset of our BODIPY-based fluorophores yielded varied length Stokes shifts probes, which were used to create a five-color image using a single excitation with confocal laser scanning microscopy for the first time. Combining these novel fluorophores with conventional fluorophores could facilitate imaging in up to nine to ten colors using linear unmixing based microscopy approaches.

10.
Cell Syst ; 6(3): 329-342.e6, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29550255

RESUMEN

Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-ß1 (NRG1ß), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.


Asunto(s)
Genes erbB-2/efectos de los fármacos , Genes erbB-2/genética , Microambiente Tumoral/genética , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Bases de Datos Genéticas , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes erbB-2/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Lapatinib/farmacología , Células MCF-7 , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Quinazolinas/farmacología , Quinolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Sci Rep ; 7(1): 16459, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184166

RESUMEN

We describe here a method, termed immunoFISH, for simultaneous in situ analysis of the composition and distribution of proteins and individual RNA transcripts in single cells. Individual RNA molecules are labeled by hybridization and target proteins are concurrently stained using immunofluorescence. Multicolor fluorescence images are acquired and analyzed to determine the abundance, composition, and distribution of hybridized probes and immunofluorescence. We assessed the ability of immunoFISH to simultaneous quantify protein and transcript levels and distribution in cultured HER2 positive breast cancer cells and human breast tumor samples. We demonstrated the utility of this assay in several applications including demonstration of the existence of a layer of normal myoepithelial KRT14 expressing cells that separate HER2+ cancer cells from the stromal and immune microenvironment in HER2+ invasive breast cancer. Our studies show that immunoFISH provides quantitative information about the spatial heterogeneity in transcriptional and proteomic features that exist between and within cells.


Asunto(s)
Hibridación in Situ , Proteínas/metabolismo , ARN Mensajero/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ/métodos , Hibridación Fluorescente in Situ/métodos , Espacio Intracelular , ARN Mensajero/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
12.
J Pathol Inform ; 2: 50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22200032

RESUMEN

For many years pathologists have used Hematoxylin and Eosin (H&E), single marker immunohistochemistry (IHC) and in situ hybridization with manual analysis by microscopy or at best simple digital imaging. There is a growing trend to update pathology to a digital workflow to improve objectivity and productivity, as has been done in radiology. There is also a need for tissue-based multivariate biomarker assays to improve the accuracy of diagnostic, prognostic, and predictive testing. Multivariate tests are not compatible with the traditional single marker, manual analysis pathology methods but instead require a digital platform with brightfield and fluorescence imaging, quantitative image analysis, and informatics. Here we describe the use of the Hamamatsu NanoZoomer Digital Pathology slide scanner with HCImage software for combined brightfield and multiplexed fluorescence biomarker analysis and highlight its applications in biomarker research and pathology testing. This combined approach will be an important aid to pathologists in making critical diagnoses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA