Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153661

RESUMEN

Drug-induced kidney injury (DIKI) is the major cause of acute kidney injury (AKI). Renal proximal tubular epithelial cells (RPTECs) are the primary target sites of DIKI and express transporters involved in renal drug disposition. In the present study, we focused on three-dimensionally cultured human RPTECs (3D-RPTECs) with elevated expression of drug transporters to investigate their utility in DIKI evaluation. Intracellular ATP levels in 3D-RPTECs are reduced by tenofovir and cisplatin that are substrates of an organic anion transporter 1 and an organic cation transporter 2, respectively. In addition, 3D-RPTECs were exposed to 17 and 15 drugs that are positive and negative to RPTEC toxicity, respectively, for up to 28 d. The 20 % decreasing concentration of drugs for ATP amount (EC20) was obtained, and the ratio of EC20 values and clinical maximum concentration (Cmax) ≤100 were used as cut-off value to evaluate potential of DIKI. The sensitivities of 3D-RPTECs were 82.4 % and 88.2 % after 7 d and 28 d of drug exposure, respectively, and the specificities were 100 % and 93.3 %, respectively. The predictive performance of 3D-RPTECs was higher than that of two-dimensional cultured RPTECs and the kidney cell line HK-2. In conclusion, 3D-RPTECs are useful for in vitro evaluation of RPTEC injury by measuring intracellular ATP levels.

2.
Biol Pharm Bull ; 45(3): 316-322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228397

RESUMEN

The type of method adopted for the evaluation of drug-induced kidney injury (DIKI) plays an important role during the drug discovery process. In the present study, the usefulness of cultured rat kidney tissue slices maintained on gas-permeable poly(dimethylsiloxane) (PDMS) plates for DIKI was assessed by monitoring the ATP content as a marker of cell viability. The amount of ATP in the kidney slices cultured on the PDMS plates was higher than that in the slices cultured on gas-impermeable polystyrene plates. The protein expression of organic cation transporter-2 (Oct2) was maintained for 3 d. Cisplatin showed a time- and concentration-dependent reduction in ATP in the slices with a half-effective concentration value of 24 µM, which was alleviated by cimetidine, an Oct2 inhibitor, suggesting that cisplatin-induced kidney injury in the cultured slices was regulated by the basolateral uptake transporter Oct2. Furthermore, the intensity of platinum anticancer drug-induced nephrotoxicity in the cultured slices was consistent with that of the in vivo study. In conclusion, the primary culture of rat kidney tissue slices on gas-permeable plates is expected to aid in the prediction of the extent of nephrotoxicity of drugs, even when transporters are responsible for the accumulation of drugs in kidney tissues.


Asunto(s)
Antineoplásicos , Platino (Metal) , Animales , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Cisplatino/efectos adversos , Riñón , Proteínas de Transporte de Catión Orgánico/metabolismo , Platino (Metal)/metabolismo , Ratas
3.
J Pharm Sci ; 108(8): 2798-2804, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30959054

RESUMEN

Kidney slice has been often used as a tool reflecting basolateral transport in renal tubular epithelial cells. Recently, we reported that several important apical reabsorptive transporters such as Octn1/2, Sglt1/2, and Pept1/2 were functional in mouse kidney slices as well as transporter activities in basolateral side, which have been well accepted. Because rats are often used for preclinical pharmacodynamic and pharmacokinetic studies as well as mice, it is important to confirm applicability of rat kidney slices for evaluation of apically expressed transporters. The present study investigates usefulness of kidney slices from rats for evaluation of apical membrane transporters for efflux (multidrug resistance 1a, mdr1a) as well as influx (Octn1/2, Sglt1/2, Pept1/2). Na+-dependent uptake of ergothioneine (Octn1), carnitine (Octn2), and methyl-α-D-glucopyranoside (Sglt1/2) by rat kidney slices was observed, and the uptake was decreased by selective inhibitors. In addition, uptake of glycyl-sarcosine (Pept1/2) showed H+-dependence and was decreased by selective inhibitor. Furthermore, accumulation of mdr1a substrate azasetron was increased in the presence of zosuquidar, an mdr1a inhibitor, while strain differences existed. In conclusion, rat kidney slices should be useful for evaluation of renal drug disposition regulated by transporters in apical as well as basolateral membranes of rat renal proximal tubule cells.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Células HEK293 , Humanos , Riñón/metabolismo , Masculino , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador de Péptidos 1/metabolismo , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Ratas , Ratas Wistar , Transportador 1 de Sodio-Glucosa/metabolismo , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA