Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 6(9): e24443, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931719

RESUMEN

In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cresta Neural/citología , Animales , Región Branquial/citología , Condrocitos/citología , Ganglios/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Modelos Biológicos , Mutación , Neuroglía/citología , Neuronas/citología , Factores de Transcripción SOXE/genética , Transgenes , Pez Cebra
2.
Development ; 138(18): 3921-30, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862556

RESUMEN

The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.


Asunto(s)
Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/embriología , Células Madre/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Desarrollo Óseo/genética , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular , Embrión no Mamífero , Sistema de la Línea Lateral/metabolismo , Mutación/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre/citología , Transactivadores/genética , Transactivadores/metabolismo , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA