Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 195: 115500, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690410

RESUMEN

Ocean acidification (OA) is becoming a potential threat to marine organisms, especially in calcifying marine invertebrates. So far, along the Kenya Coast, there has been little research on the impact of OA on cockle (Anadara antiquata), particularly on their physiological impacts induced by exposure to acidified seawater. Hence, this study aimed to investigate the physiological and biochemical responses of Anadara antiquata under present and future predicted seawater pH. In this study, the Anadara antiquata was exposed to three pH treatments (pH 7.90, 7.60, and 7.30) for 8 weeks to mimic future OA and to understand the physiological and biochemical effects on the organisms. Condition index, energy reserves (glycogen and protein), and cellular damage (e.g., lipid peroxidation level) were measured. Condition index (CI) showed no significant difference at different pH treatments (pH 7.90, 7.60, and 7.30), whereas the survival Anadara antiquata was slightly reduced after 8 weeks of exposure to pH 7.30. Glycogen and protein content were not affected at reduced pH (7.60 and 7.30). However, after 8 weeks of exposure to pH 7.60 and 7.30, Anadara antiquata showed a slight decrease in lipid peroxidation, an indication of cellular damage. The physiological and biochemical parameters analyzed (glycogen and protein content; lipid peroxidation levels) showed useful biomarkers to assess ocean acidification impacts in cockle.

2.
Chemosphere ; 311(Pt 2): 137144, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343733

RESUMEN

The information on pharmaceutical compounds' distribution and their possible risks in marine ecosystems along the Kenya coast is limited especially in the peri-urban creeks. Hence, this study aimed to determine pharmaceutical residue levels and distribution in selected peri-urban creeks in Mombasa and Gazi bay. The target compounds were analgesic (acetaminophen), antibiotics (trimethoprim and sulfamethoxazole), antiepileptic (carbamazepine), and antiretroviral (nevirapine). Pharmaceutical residues in grab surface seawater in wet and dry seasons ranged from below detection limit (BDL)-1065.6 µg L-1 and BDL-71.3 µg L-1, respectively. The concentration of the pharmaceutical residues was high in Tudor creek in the dry and wet seasons with a mean concentration of 63.3 µg L-1 and 233.1 µg L-1 respectively compared to Makupa creek (dry season, 54.2 µg L-1; wet season 16.2 µg L), and Mtwapa creek (dry season, 43.1 µg L-1; wet season, 15.0 µg L-1). Gazi Bay being used as a control site had a mean concentration of 21.3 µg L-1 and 3.1 µg L-1 during the dry season and wet season respectively. Acetaminophen and nevirapine were the most ubiquitous compounds in seawater since they were found in all seawater samples collected. Risk quotients (RQ) for invertebrates and algae based on the mean concentrations of the analytes were estimated to provide a preliminary environmental risk assessment. The results suggest that the studied acetaminophen, trimethoprim, sulfamethoxazole, and carbamazepine in seawater pose low (0.01 ≤ RQ < 0.1) to medium (0.1 ≤ RQ < 1) ecological risk whereas nevirapine poses medium to high (RQ ≥ 1) ecological risk to the ecosystems of Mombasa periurban creeks and Gazi bay. Further research, however, is encouraged on the distribution of pharmaceuticals in the marine environment and the long-term synergistic effects of mixtures of these compounds on marine biota.

3.
Membranes (Basel) ; 12(11)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363593

RESUMEN

The performance of a desalination membrane depends on a specific pore size suitable for both water permeability and salt rejection. To increase membrane permeability, the applied pressure should be increased, which creates the need to improve membrane stability. In this research article, a molecular dynamics (MD) simulation was performed using ReaxFF module from Amsterdam Modeling suite (AMS) software to simulate water desalination efficiency using a single and multi-layer graphene membrane. The graphene membrane with different pore sizes and a multi-layer graphene membrane with descending pore size in each layer were designed and studied under different pressures. The stability of the membrane was checked using Material Studio 2019 by studying the dynamics summary. The single-layer graphene membrane was evaluated under pressures ranging from 100 to 500 MPa, with the salt rejection ranging from 95% to 82% with a water permeability of 0.347 × 10-9 to 2.94 × 10-9 (mm.g.cm-2s-1.bar-1), respectively. Almost 100% salt rejection was achieved for the multi-layer graphene membrane. This study successfully demonstrated the design and optimization of graphene membrane performance without functionalization.

4.
Membranes (Basel) ; 12(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35629831

RESUMEN

In this study, BiOCl based nanocomposites were used as photocatalytic membranes for a simulated study on water desalination in reverse osmosis membrane systems. Through molecular dynamic simulation, the molecular structure of BiOCl, BiOCl/Ag2S and BiOCl/Bi2O3 heterojunctions were designed and their electronic properties, mechanical properties, and membrane performance for water desalination were evaluated for the first time. The molecular structure was created, and a geometry optimization task was used to optimize it. Material Studio 2019 CASTEP was used for simulation of the electronic and mechanical properties and water desalination was performed by ReaxFF software under pressures between 0 and 250 MPa. The novel BiOCl based nanocomposites showed improved electronic and mechanical properties and, most importantly, improvements in salt rejection and water permeability as compared to well-known materials such as graphene and MoS2. BiOCl and BiOCl/Ag2S had a bandgap around two, which is the ideal bandgap for semiconductor photocatalysts. A salt rejection of 98% was achieved under an applied pressure of 10 MPa. Salt rejection was higher for BiOCl/Bi2O3, while water permeability was higher for BiOCl/Ag2S. The monolayer BiOCl was unstable under pressures higher than 50 MPa, but the mechanical stability of BiOCl/Ag2S increased twofold and increased fourfold for BiOCl/Bi2O3, which is even higher than MoS2. However, between the three nanocomposites, BiOCl/Ag2S was found to be the most ideal photocatalytic nanocomposite membrane.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31640145

RESUMEN

There is growing interest in determining the unidentified peaks within a sample spectra besides the analytes of interest. Availability of reference standards and hyphenated instruments has been a key and limiting factor in the rapid determination of emerging pollutants in the environment. In this work, polar compounds were silylated and analyzed with gas chromatography mass spectrometry (GC-MS) to determine the abundant fragments within the single ion monitoring (SIM) mode and methodology. Detection limits and recoveries of the compounds were established in river water, wastewater, biosolid and sediment matrices. Then, specific types of polar compounds that are classified as emerging contaminants, pharmaceuticals and personal care products, in the environment were targeted in the Mgeni and Msunduzi Rivers. We also performed suspect and non-target analysis screening to identify several other polar compounds in these rivers. A total of 12 compounds were quantified out of approximately 50 detected emerging contaminants in the Mgeni and Msunduzi Rivers. This study is significant for Africa, where the studies of emerging contaminants are limited and not usually prioritized.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Sedimentos Geológicos/análisis , Ríos/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , África , Monitoreo del Ambiente/métodos , Límite de Detección
6.
Environ Sci Pollut Res Int ; 22(1): 211-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25060314

RESUMEN

Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm(3)/g). One percentage of weight Mn/TiO2 showed 100% decolouration of MB in the presence of O3 after 100 min.


Asunto(s)
Manganeso/química , Nanocompuestos/química , Titanio/química , Catálisis , Luz , Azul de Metileno/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Ozono/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA