Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Discov Today ; 29(8): 104086, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960132

RESUMEN

Circulating cell-free mitochondrial DNA (ccf-mtDNA) has emerged as a promising biomarker, with potential implications for disease diagnosis. Changes in mtDNA, such as deletions, mutations or variations in the number of copies, have been associated with mitochondrial disorders, heart diseases, cancer and age-related non-communicable diseases. Previous methods, such as polymerase chain reaction-based approaches, next-generation sequencing and imaging-based techniques, have shown improved accuracy in identifying rare mtDNA variants or mutations, but they have limitations. This article explains the basic principles and benefits of using planar optical waveguide-based detection devices, which represent an advanced approach in the field of sensing.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Mitocondrial , Medicina de Precisión , Humanos , ADN Mitocondrial/genética , Medicina de Precisión/métodos , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Nanotecnología/métodos , Mutación , Animales , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico
2.
Reprod Toxicol ; 129: 108675, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074641

RESUMEN

Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.


Asunto(s)
Epigénesis Genética , Placenta , Humanos , Embarazo , Femenino , Placenta/metabolismo , ADN , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/toxicidad , Anomalías Congénitas , Metilación de ADN , Pronóstico , Animales
3.
Mikrochim Acta ; 191(5): 255, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594377

RESUMEN

Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.


Asunto(s)
Alphaproteobacteria , Compuestos de Calcio , Enfermedades Cardiovasculares , Aprendizaje Profundo , Micromonosporaceae , Óxidos , Puntos Cuánticos , Titanio , Humanos , ARN Ribosómico 16S/genética , Enfermedades Cardiovasculares/diagnóstico
4.
Environ Sci Pollut Res Int ; 31(6): 8429-8452, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182954

RESUMEN

Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Humanos , Plásticos , Carbono , Inteligencia Artificial
5.
ACS Omega ; 8(43): 40677-40684, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953834

RESUMEN

The increased understanding of the competitive endogenous RNA (ceRNA) network in the onset and development of breast cancers has suggested their use as promising disease biomarkers. Keeping these RNAs as molecular targets, we designed and developed an optical nanobiosensor for specific detection of the miRNAs-LncRNAs-mRNAs triad grid in circulation. The sensor was formulated using three quantum dots (QDs), i.e., QD-705, QD-525, and GQDs. These QDs were surface-activated and modified with a target-specific probe. The results suggested the significant ability of the developed nanobiosensor to identify target RNAs in both isolated and plasma samples. Apart from the higher specificity and applicability, the assessment of the detection limit showed that the sensor could detect the target up to 1 fg concentration. After appropriate validation, the developed nanobiosensor might prove beneficial to characterizing and detecting aberrant disease-specific cell-free circulating miRNAs-lncRNAs-mRNAs.

6.
Biosensors (Basel) ; 13(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36831992

RESUMEN

Currently, non-communicable diseases (NCDs) have emerged as potential risks for humans due to adopting a sedentary lifestyle and inaccurate diagnoses. The early detection of NCDs using point-of-care technologies significantly decreases the burden and will be poised to transform clinical intervention and healthcare provision. An imbalance in the levels of circulating cell-free microRNAs (ccf-miRNA) has manifested in NCDs, which are passively released into the bloodstream or actively produced from cells, improving the efficacy of disease screening and providing enormous sensing potential. The effective sensing of ccf-miRNA continues to be a significant technical challenge, even though sophisticated equipment is needed to analyze readouts and expression patterns. Nanomaterials have come to light as a potential solution as they provide significant advantages over other widely used diagnostic techniques to measure miRNAs. Particularly, CNDs-based fluorescence nano-biosensors are of great interest. Owing to the excellent fluorescence characteristics of CNDs, developing such sensors for ccf-microRNAs has been much more accessible. Here, we have critically examined recent advancements in fluorescence-based CNDs biosensors, including tools and techniques used for manufacturing these biosensors. Green synthesis methods for scaling up high-quality, fluorescent CNDs from a natural source are discussed. The various surface modifications that help attach biomolecules to CNDs utilizing covalent conjugation techniques for multiple applications, including self-assembly, sensing, and imaging, are analyzed. The current review will be of particular interest to researchers interested in fluorescence-based biosensors, materials chemistry, nanomedicine, and related fields, as we focus on CNDs-based nano-biosensors for ccf-miRNAs detection applications in the medical field.


Asunto(s)
Técnicas Biosensibles , MicroARN Circulante , MicroARNs , Nanoestructuras , Humanos , Carbono/química , Nanoestructuras/química , Fluorescencia , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA