Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891262

RESUMEN

Improving the quality of tree planting material for carbon sequestration through reforestation can help solve environmental problems, including the need to reduce the concentration of carbon dioxide in the atmosphere. The purpose of this study was to investigate the possibility of using humic substances in combination with rhizosphere microorganisms Pseudomonas protegens DA1.2 and Pseudomonas sp. 4CH as a means to stimulate the growth of seedlings of pine, poplar, large-leaved linden, red oak, horse chestnut, and rowan. Humic substances stimulated the growth of shoots and roots of pine, large-leaved linden, and horse chestnut seedlings. The effects of bacteria depended on both plant and bacteria species: Pseudomonas protegens DA1.2 showed a higher stimulatory effect than Pseudomonas sp. 4CH on pine and linden, and Pseudomonas sp. 4CH was more effective in the case of chestnut. An additive effect of humates and Pseudomonas protegens DA1.2 on the growth rate of pine and linden saplings was discovered. Poplar, red oak, and rowan seedlings were unresponsive to the treatments. The growth-stimulating effects of the treatments are discussed in connection with the changes in carbon, chlorophyll, and nitrogen contents in plants. The results show the need for further research in bacterial species capable of stimulating the growth of plant species that were unresponsive in the present experiments.

2.
Microorganisms ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985123

RESUMEN

The search for ways to increase plant productivity in drought conditions is of fundamental importance, since soil moisture deficiency is widespread and leads to critical crop losses. The aim of this study was to identify the effects of plant growth-promoting bacteria and humic substances on the growth, chlorophyll, flavonoids, nitrogen balance index, and concentration of cytokinins and abscisic acids in wheat plants grown in the laboratory under conditions of water deficit. An increase in the accumulation of plant mass was shown during the treatment of wheat plants with Pseudomonas plecoglossicida 2,4-D and humic substances in these conditions. It has been shown that stimulating plant growth is associated with increased root growth, which leads to an increase in the nitrogen balance index, chlorophyll, and flavonoid concentrations in treated plants. The detected increase in the concentration of chlorophyll in plants treated with P. plecoglossicida 2,4-D correlated with a decrease in the concentration of abscisic acid in plant shoots and, in plants treated with humates, with an increase in the concentration of cytokinins in shoots. The higher efficiency of treating plants with a combination of bacteria and humic substances than with any of them individually may be associated with the additive effect of these treatments on the hormonal balance.

3.
Microorganisms ; 10(5)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630508

RESUMEN

Both rhizosphere bacteria and humic substances (HSs) can promote plant growth when applied individually and even greater effects of their combination have been demonstrated. We aimed to elucidate the relative importance of the stimulating effects of HSs on bacterial growth and the effects of the combination of bacteria and HSs on plants themselves. The effects of humic (HA) and fulvic acids (FA) (components of humic substances) on the growth of Pseudomonas plecoglossicida 2,4-D in vitro were studied. We also studied the effects of this bacterial strain and HSs applied individually or in combination on the growth of wheat plants. Although the 2,4-D strain showed low ability to use HSs as the sole source of nutrition, the bacterial growth rate was increased by FA and HA, when other nutrients were available. HSs increased root colonization with bacteria, the effect being greater in the case of HA. The effects on roots and shoots increased when bacteria were associated with HSs. FA+ 2,4-D was more effective in stimulating shoot growth, while HA + 2,4-D was in the case of root growth. The latter effect is likely to be beneficial under edaphic stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA