Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 261(1): 65-75, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37462717

RESUMEN

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Iluminación , Clorofila A/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas de Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fosforilación , Luz
2.
Photosynth Res ; 161(1-2): 79-92, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38108927

RESUMEN

Inhibitory analysis is a useful tool for studying cytochrome b6f complex in the photosynthetic electron transport chain. Here, we examine the inhibitory efficiency of two widely used inhibitors of the plastoquinol oxidation in the cytochrome b6f complex, namely 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT) and 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). Using isolated thylakoids from pea and arabidopsis, we demonstrate that inhibitory activity of DNP-INT and DBMIB is enhanced by increasing irradiance, and this effect is due to the increase in the rate of electron transport. However, the accumulation of protons in the thylakoid lumen at low light intensity has opposite effects on the inhibitory activity of DNP-INT and DBMIB, namely increasing the activity of DNP-INT and restricting the activity of DBMIB. These results allow for the refinement of the conditions under which the use of these inhibitors leads to the complete inhibition of plastoquinol oxidation in the cytochrome b6f complex, thereby broadening our understanding of the operation of the cytochrome b6f complex under conditions of steady-state electron transport.


Asunto(s)
Arabidopsis , Complejo de Citocromo b6f , Fotosíntesis , Pisum sativum , Plastoquinona , Tilacoides , Transporte de Electrón/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Pisum sativum/efectos de los fármacos , Pisum sativum/metabolismo , Complejo de Citocromo b6f/metabolismo , Plastoquinona/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Tilacoides/metabolismo , Tilacoides/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Benzoquinonas/farmacología , Dibromotimoquinona/farmacología , Luz , Dinitrobencenos/farmacología
3.
Plants (Basel) ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37176821

RESUMEN

The knockout of the At2g28210 gene encoding α-carbonic anhydrase 2 (α-CA2) in Arabidopsis thaliana (Columbia) led to alterations in photosynthetic processes. The effective quantum yields of both photosystem II (PSII) and photosystem I (PSI) were higher in α-carbonic anhydrase 2 knockout plants (α-CA2-KO), and the reduction state of plastoquinone pool was lower than in wild type (WT). The electron transport rate in the isolated thylakoids measured with methyl viologen was higher in α-CA2-KO plants. The amounts of reaction centers of PSII and PSI were similar in WT and α-CA2-KO plants. The non-photochemical quenching of chlorophyll a fluorescence in α-CA2-KO leaves was lower at the beginning of illumination, but became slightly higher than in WT leaves when the steady state was achieved. The degree of state transitions in the leaves was lower in α-CA2-KO than in WT plants. Measurements of the electrochromic carotenoid absorbance shift (ECS) revealed that the light-dependent pH gradient (ΔpH) across the thylakoid membrane was lower in the leaves of α-CA2-KO plants than in WT plants. The starch content in α-CA2-KO leaves was lower than in WT plants. The expression levels of the genes encoding chloroplast CAs in α-CA2-KO changed noticeably, whereas the expression levels of genes of cytoplasmic CAs remained almost the same. It is proposed that α-CA2 may be situated in the chloroplasts.

4.
Plants (Basel) ; 11(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015416

RESUMEN

The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, ßCA1, ßCA2, ßCA3, ßCA4, ßCA5, and ßCA6, were measured in the leaves of Arabidopsis thaliana plants, acclimated to different CO2 content in the air: low (150 ppm, lCO2), normal (450 ppm, nCO2), and high (1200 ppm, hCO2). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll a fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO2 concentration in the air. That was preceded by an increase in the expression levels of genes encoding the cytoplasmic form of ßCA1, and other cytoplasmic CAs, ßCA2, ßCA3, and ßCA4, as well as of the chloroplast CAs, ßCA5, and the stromal forms of ßCA1 in a short-term range 1-2 days after the beginning of the acclimation. The dependence on the CO2 content in the air was most noticeable for the CA activity of the preparations of the stroma; it was two orders higher in lCO2 plants than in hCO2 plants. The CA activity of thylakoid membranes from lCO2 plants was higher than that in nCO2 and hCO2 plants; however, in these plants, a significant increase in the expression levels of the genes encoding αCA2 and αCA4 located in thylakoid membranes was not observed. The CA activity of mitochondria and the expression level of the mitochondrial ßCA6 gene did not depend on the content of carbon dioxide. Taken together, the data implied that in the higher plants, the supply of inorganic carbon to carboxylation sites is carried out with the cooperative functioning of CAs located in the cytoplasm and CAs located in the chloroplasts.

5.
Biochim Biophys Acta Bioenerg ; 1863(1): 148506, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751144

RESUMEN

Inhibitory analysis is a useful tool for studying reactions in the photosynthetic apparatus. After introducing by Aachim Trebst in 1978, dinitrophenylether of iodonitrothymol (DNP-INT), a competitive inhibitor of plastoquinol oxidation at the cytochrome (cyt.) b6f complex, has been widely applied to study reactions occurring in the plastoquinone pool and the cyt. b6f complex. Here we examine the inhibitory efficiency of DNP-INT by implementing three approaches to estimate the extent of blockage of electron flow from the plastoquinone pool to photosystem I in isolated thylakoids from spinach (Spinacia oleracea). We confirm that DNP-INT is a potent inhibitor of electron flow to photosystem I and demonstrate that inhibitory action of DNP-INT depends on irradiance and H+ uptake by thylakoid membranes. Based on these findings, we infer that affinity of the quinol-oxidizing site of the cyt. b6f complex to DNP-INT is increased in the light due to hydrogen bonding between DNP-INT molecules and acidic amino acid residue(s), which is (are) protonated in the light.


Asunto(s)
Complejo de Citocromo b6f , Plastoquinona , Tilacoides
6.
Funct Plant Biol ; 47(11): 959-969, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32564779

RESUMEN

We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.


Asunto(s)
Arabidopsis , Complejo de Proteína del Fotosistema II , Aclimatación , Arabidopsis/genética , Hojas de la Planta , Plastoquinona
7.
Photosynth Res ; 143(3): 275-286, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897856

RESUMEN

The aim of this work was a comparative study of S-repleted and S-depleted photoautotrophic cultures of Chlamydomonas reinhardtii under aerobic and anoxic conditions with the main focus on PSII activity. For that we used photobioreactor with short light path connected on-line to PAM fluorometer and cultivated microalgae in twice concentrated HS medium to avoid any uncontrolled limitation by mineral elements. Photoautotrophic cultures grown under Ar + CO2 gas mixture did not reach the same Chl (a + b) concentration as control culture (grown under air + CO2). At pO2 40% of air saturation (96 µM O2), the actual quantum yield of PSII started to decrease. Under microaerobic conditions when cultures stopped growing, the most significant changes in PSII function were observed. Maximum quantum yield Fv/Fm decreased significantly along with performance index, PIabs. It was accompanied by increase of fluorescence at J point, Vj. Results indicate that microaerobic conditions are stressful for photoautotrophic cultures. Photoautotrophic cultures of microalgae under S-deprivation in aerobic or anaerobic conditions showed similar behavior as photoheterotrophic ones described earlier. However, photoautotrophic cultures during anaerobiosis establishment did not show sharp "switch off" effect of actual quantum yield. We show also that S-deprivation under air or argon as well as the growth under Ar + CO2 cause significant increase of initial rise of fluorescence, which indicates that PSII and oxygen-evolving complex might be disintegrated.


Asunto(s)
Procesos Autotróficos , Chlamydomonas reinhardtii/metabolismo , Hidrógeno/metabolismo , Procesos Fototróficos , Azufre/deficiencia , Anaerobiosis/efectos de los fármacos , Argón/farmacología , Atmósfera , Procesos Autotróficos/efectos de los fármacos , Técnicas de Cultivo Celular por Lotes , Dióxido de Carbono/farmacología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/crecimiento & desarrollo , Fluorometría , Oxígeno/metabolismo , Fotobiorreactores/microbiología , Procesos Fototróficos/efectos de los fármacos
8.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31784823

RESUMEN

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/química
9.
FEBS Lett ; 592(19): 3221-3228, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30179252

RESUMEN

The plastoquinone (PQ)-pool in chloroplast thylakoid membranes is a key electron carrier in the photosynthetic electron transport chain (PETC), and its redox state plays an essential role in the control of plant metabolism. Oxygen reduction in thylakoid membranes produces superoxide anion radicals ( O 2 · - ), which may react with the PQ-pool. Here, using isolated thylakoids, we show for the first time the oxidation of the PQ-pool by O 2 · - . The xanthine-xanthine oxidase system was used to supply O 2 · - externally to the thylakoid membrane and the redox state of the PQ-pool was monitored by tracking chlorophyll a fluorescence. We propose that, in vivo, the reaction of  O 2 · - produced in Photosystem I with reduced PQ (plastohydroquinone) creates hydrogen peroxide, which serves as a messenger that signals the redox state of the PETC.


Asunto(s)
Cloroplastos/metabolismo , Plastoquinona/metabolismo , Superóxidos/metabolismo , Tilacoides/metabolismo , Oxidación-Reducción , Pisum sativum/metabolismo , Hojas de la Planta/metabolismo
10.
J Exp Bot ; 66(22): 7151-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26324464

RESUMEN

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.


Asunto(s)
Aclimatación , Peróxido de Hidrógeno/metabolismo , Luz , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Transducción de Señal , Aclimatación/efectos de la radiación , Hordeum , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/metabolismo , Transducción de Señal/efectos de la radiación
11.
Biochim Biophys Acta ; 1817(8): 1314-21, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22421105

RESUMEN

Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane. Fluorescent probe Amplex red, which forms fluorescent product, resorufin, in the reaction with hydrogen peroxide, has been used to detect hydrogen peroxide outside isolated chloroplasts using confocal microscopy. Resorufin fluorescence outside the chloroplasts is found to be suppressed by 60% in the presence of the inhibitor of aquaporins, acetazolamide (AZA), indicating that hydrogen peroxide can diffuse through the chloroplast envelope aquaporins. It is demonstrated that AZA also inhibits carbonic anhydrase activity of the isolated envelope. We put forward a hypothesis that carbonic anhydrase presumably can be attached to the envelope aquaporins. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Asunto(s)
Acuaporinas/fisiología , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Acetazolamida/metabolismo , Difusión , Transporte de Electrón , Luz , Superóxidos/metabolismo
12.
J Exp Bot ; 61(13): 3577-87, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20595239

RESUMEN

Hydrogen peroxide (H(2)O(2)) is recognized as an important signalling molecule. There are two important aspects to this function: H(2)O(2) production and its diffusion to its sites of action. The production of H(2)O(2) by photosynthetic electron transport and its ability to diffuse through the chloroplast envelope membranes has been investigated using spin trapping electron paramagnetic resonance spectroscopy and H(2)O(2)-sensitive fluorescence dyes. It was found that, even at low light intensity, a portion of H(2)O(2) produced inside the chloroplasts can leave the chloroplasts thus escaping the effective antioxidant systems located inside the chloroplast. The production of H(2)O(2) by chloroplasts and the appearance of H(2)O(2) outside chloroplasts increased with increasing light intensity and time of illumination. The amount of H(2)O(2) that can be detected outside the chloroplasts has been shown to be up to 5% of the total H(2)O(2) produced inside the chloroplasts at high light intensities. The fact that H(2)O(2) produced by chloroplasts can be detected outside these organelles is an important finding in terms of understanding how chloroplastic H(2)O(2) can serve as a signal molecule.


Asunto(s)
Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Arabidopsis/fisiología , Difusión , Espectroscopía de Resonancia por Spin del Electrón , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Spinacia oleracea/metabolismo , Spinacia oleracea/fisiología , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA