Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 382(6673): 935-940, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995216

RESUMEN

In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Proteínas de Arabidopsis , Arabidopsis , Brassica , Hipocótilo , Fototropinas , Fototropismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Fototropinas/metabolismo , Transducción de Señal
2.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639112

RESUMEN

Interaction between light signaling and stress response has been recently reported in plants. Here, we investigated the role of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a key regulator of light signaling, in endoplasmic reticulum (ER) stress response in Arabidopsis. The cop1-4 mutant Arabidopsis plants were highly sensitive to ER stress induced by treatment with tunicarmycin (Tm). Interestingly, the abundance of nuclear-localized COP1 increased under ER stress conditions. Complementation of cop1-4 mutant plants with the wild-type or variant types of COP1 revealed that the nuclear localization and dimerization of COP1 are essential for its function in plant ER stress response. Moreover, the protein amount of ELONGATED HYPOCOTYL 5 (HY5), which inhibits bZIP28 to activate the unfolded protein response (UPR), decreased under ER stress conditions in a COP1-dependent manner. Accordingly, the binding of bZIP28 to the BIP3 promoter was reduced in cop1-4 plants and increased in hy5 plants compared with the wild type. Furthermore, introduction of the hy5 mutant locus into the cop1-4 mutant background rescued its ER stress-sensitive phenotype. Altogether, our results suggest that COP1, a negative regulator of light signaling, positively controls ER stress response by partially degrading HY5 in the nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Fototransducción , Ubiquitina-Proteína Ligasas/metabolismo , Respuesta de Proteína Desplegada , Proteínas de Arabidopsis/genética , Ubiquitina-Proteína Ligasas/genética
3.
New Phytol ; 220(1): 163-177, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29932218

RESUMEN

Investigation of the endoplasmic reticulum-associated degradation (ERAD) system in plants led to the identification of ERAD-mediating RING finger protein (EMR) as a plant-specific ERAD E3 ligase from Arabidopsis. EMR was significantly up-regulated under endoplasmic reticulum (ER) stress conditions. The EMR protein purified from bacteria displayed high E3 ligase activity, and tobacco leaf-produced EMR mediated mildew resistance locus O-12 (MLO12) degradation in a proteasome-dependent manner. Subcellular localization and coimmunoprecipitation analyses showed that EMR forms a complex with ubiquitin-conjugating enzyme 32 (UBC32) as a cytosolic interaction partner. Mutation of EMR and RNA interference (RNAi) increased the tolerance of plants to ER stress. EMR RNAi in the bri1-5 background led to partial recovery of the brassinosteroid (BR)-insensitive phenotypes as compared with the original mutant plants and increased ER stress tolerance. The presented results suggest that EMR is involved in the plant ERAD system that affects BR signaling under ER stress conditions as a novel Arabidopsis ring finger E3 ligase mainly present in cytosol while the previously identified ERAD E3 components are typically membrane-bound proteins.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteolisis , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Aciltransferasas/genética , Adaptación Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Fenotipo , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo
4.
Front Plant Sci ; 9: 214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515614

RESUMEN

Maintenance of homeostasis of the endoplasmic reticulum (ER) ensures the balance between loading of nascent proteins and their secretion. Certain developmental conditions or environmental stressors affect protein folding causing ER stress. The resultant ER stress is mitigated by upregulating a set of stress-responsive genes in the nucleus modulating the mechanism of the unfolded protein response (UPR). In plants, the UPR is mediated by two major pathways; by the proteolytic processing of bZIP17/28 and by the IRE1-mediated splicing of bZIP60 mRNA. Recent studies have shown the involvement of plant-specific NAC transcription factors in UPR regulation. The molecular mechanisms activating plant-UPR transducers are only recently being unveiled. This review focuses on important structural features involved in the activation of the UPR transducers like bZIP17/28/60, IRE1, BAG7, and NAC017/062/089/103. Also, we discuss the activation of the UPR pathways, including BAG7-bZIP28 and IRE1-bZIP60, in detail, together with the NAC-TFs, which adds a new paradigm to the plant UPR.

5.
Nat Commun ; 9(1): 553, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396394

RESUMEN

The previously published version of this Article contained errors in Figure 5. In panel c, the second and fourth blot images were incorrectly labeled 'α-Myc' and should have been labelled 'α-HA'. These errors have been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 8(1): 2259, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273730

RESUMEN

In Arabidopsis thaliana, CONSTANS (CO) plays an essential role in the regulation of photoperiodic flowering under long-day conditions. CO protein is stable only in the afternoon of long days, when it induces the expression of FLOWERING LOCUS T (FT), which promotes flowering. The blue-light photoreceptor FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) interacts with CO and stabilizes it by an unknown mechanism. Here, we provide genetic and biochemical evidence that FKF1 inhibits CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-dependent CO degradation. Light-activated FKF1 has no apparent effect on COP1 stability but can interact with and negatively regulate COP1. We show that FKF1 can inhibit COP1 homo-dimerization. Mutation of the coiled-coil domain in COP1, which prevents dimer formation, impairs COP1 function in coordinating flowering time. Based on these results, we propose a model whereby the light- and day length-dependent interaction between FKF1 and COP1 controls CO stability to regulate flowering time.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/genética , Luz , Fotoperiodo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Arabidopsis , Dimerización , Mutación , Plantas Modificadas Genéticamente , Ubiquitina-Proteína Ligasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(8): 2084-2089, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167764

RESUMEN

Light influences essentially all aspects of plant growth and development. Integration of light signaling with different stress response results in improvement of plant survival rates in ever changing environmental conditions. Diverse environmental stresses affect the protein-folding capacity of the endoplasmic reticulum (ER), thus evoking ER stress in plants. Consequently, the unfolded protein response (UPR), in which a set of molecular chaperones is expressed, is initiated in the ER to alleviate this stress. Although its underlying molecular mechanism remains unknown, light is believed to be required for the ER stress response. In this study, we demonstrate that increasing light intensity elevates the ER stress sensitivity of plants. Moreover, mutation of the ELONGATED HYPOCOTYL 5 (HY5), a key component of light signaling, leads to tolerance to ER stress. This enhanced tolerance of hy5 plants can be attributed to higher expression of UPR genes. HY5 negatively regulates the UPR by competing with basic leucine zipper 28 (bZIP28) to bind to the G-box-like element present in the ER stress response element (ERSE). Furthermore, we found that HY5 undergoes 26S proteasome-mediated degradation under ER stress conditions. Conclusively, we propose a molecular mechanism of crosstalk between the UPR and light signaling, mediated by HY5, which positively mediates light signaling, but negatively regulates UPR gene expression.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Regulación de la Expresión Génica de las Plantas , Fototransducción/fisiología , Proteínas Nucleares/fisiología , Respuesta de Proteína Desplegada/genética , Hipocótilo , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Estrés Fisiológico
8.
Biochem Biophys Res Commun ; 488(4): 641-647, 2017 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-28088515

RESUMEN

We screened for endoplasmic reticulum (ER) stress-resistant mutants among 25 mutants of the Arabidopsis NTL (NAC with Transmembrane motif 1-Like) family. We identified a novel mutant, SALK_044777, showing strong resistance to ER stress. RT-PCR and genomic DNA sequence analyses identified the mutant as atntl7, which harbors a T-DNA insertion in the fourth exon of AtNTL7. Two other atntl7-mutant alleles, in which T-DNA was inserted in the second exon and third intron of AtNTL7, respectively, showed ER-stress sensitive phenotypes, suggesting that SALK_044777 is a gain-of-function mutant. Arabidopsis plants overexpressing AtNTL7 showed strong ER-stress resistance. Our findings suggest that AtNTL7 fragment is cleaved from the ER membrane under ER stress and translocates into the nucleus to induce downstream ER-stress responsive genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/genética
9.
Protoplasma ; 254(1): 409-421, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27002965

RESUMEN

BAG (Bcl-2 athanogene) family proteins are conserved in a wide range of eukaryotes, and they have been proposed to play a crucial role in plant programmed cell death (PCD). During the past decade, with the help of advanced bioinformatics tools, seven homologs of BAG genes have been identified in the Arabidopsis genome; these genes are involved in pathogen attack and abiotic stress conditions. In this study, gene expression of Arabidopsis BAG family members under environmental stresses was analyzed using the Botany Array Resource (BAR) expression browser tool and the in silico data were partially confirmed by qRT-PCR analysis for the selected stress- and hormone-treated conditions related to environmental stresses. Particularly, the induction of AtBAG6 gene in response to heat shock was confirmed by using GUS reporter lines. The loss of the AtBAG6 gene resulted into impairment in basal thermotolerance of plant and showed enhanced cell death in response to heat stress. To elucidate the regulatory mechanisms of BAG genes, we analyzed ∼1-kbp promoter regions for the presence of stress-responsive elements. Our transcription profiling finally revealed that the Arabidopsis BAG genes differentially respond to environmental stresses under the control of specifically organized upstream regulatory elements.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Simulación por Computador , Ambiente , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , Glucuronidasa/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Motivos de Nucleótidos/genética , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Estrés Fisiológico/efectos de los fármacos , Termotolerancia/efectos de los fármacos , Termotolerancia/genética
10.
Plant Cell Environ ; 39(7): 1631-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27004478

RESUMEN

The P3 proteins are plant-specific ribosomal P-proteins; however, their molecular functions have not been characterized. In a screen for components of heat-stable high-molecular weight (HMW) complexes, we isolated the P3 protein AtP3B from heat-treated Arabidopsis suspension cultures. By size-exclusion chromatography (SEC), SDS-PAGE and native PAGE followed by immunoblotting with anti-AtP3B antibody, we showed that AtP3B was stably retained in HMW complexes following heat shock. The level of AtP3B mRNA increased in response to both high- and low-temperature stresses. Bacterially expressed recombinant AtP3B protein exhibited both protein and RNA chaperone activities. Knockdown of AtP3B by RNAi made plants sensitive to both high- and low-temperature stresses, whereas overexpression of AtP3B increased tolerance of both conditions. Together, our results suggest that AtP3B protects cells against both high- and low-temperature stresses. These findings provide novel insight into the molecular functions and in vivo roles of acidic ribosomal P-proteins, thereby expanding our knowledge of the protein production machinery.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Termotolerancia , Frío , Electroforesis en Gel Bidimensional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estrés Fisiológico
11.
Int J Mol Sci ; 14(6): 11527-43, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23722661

RESUMEN

Low temperature adversely affects crop yields by restraining plant growth and productivity. Most temperate plants have the potential to increase their freezing tolerance upon exposure to low but nonfreezing temperatures, a process known as cold acclimation. Various physiological, molecular, and metabolic changes occur during cold acclimation, which suggests that the plant cold stress response is a complex, vital phenomenon that involves more than one pathway. The C-Repeat Binding Factor (CBF) pathway is the most important and well-studied cold regulatory pathway that imparts freezing tolerance to plants. The regulation of freezing tolerance involves the action of phytochromes, which play an important role in light-mediated signalling to activate cold-induced gene expression through the CBF pathway. Under normal temperature conditions, CBF expression is regulated by the circadian clock through the action of a central oscillator and also day length (photoperiod). The phytochrome and phytochrome interacting factor are involved in the repression of the CBF expression under long day (LD) conditions. Apart from the CBF regulon, a novel pathway involving the Z-box element also mediates the cold acclimation response in a light-dependent manner. This review provides insights into the progress of cold acclimation in relation to light quality, circadian regulation, and photoperiodic regulation and also explains the underlying molecular mechanisms of cold acclimation for introducing the engineering of economically important, cold-tolerant plants.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Congelación , Luz , Fotoperiodo , Proteínas de Plantas/metabolismo
12.
Int J Mol Sci ; 14(1): 1608-28, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23344059

RESUMEN

Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).


Asunto(s)
Células Vegetales/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Muerte Celular/genética , Muerte Celular/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Modelos Genéticos , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Células Vegetales/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
13.
Mol Plant ; 6(2): 323-36, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23024205

RESUMEN

Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°(E) plants. However, after prolonged incubation under heat shock, NTRC°(E) plants tolerated the stress to a higher degree than C217/454S-NTRC°(E) plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Chaperonas Moleculares/metabolismo , Temperatura , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Respuesta al Choque Térmico , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , NADP/metabolismo , Oxidación-Reducción , Plantas Modificadas Genéticamente , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética
14.
Mol Cells ; 33(1): 27-33, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22228209

RESUMEN

Peroxiredoxins (Prxs), which are classified into three isotypes in plants, play important roles in protection systems as peroxidases or molecular chaperones. The three Prx isotypes of Chinese cabbage, namely C1C-Prx, C2C-Prx, and C-PrxII, have recently been identified and characterized. The present study compares their molecular properties and biochemical functions to gain insights into their concerted roles in plants. The three Prx isotype genes were differentially expressed in tissue- and developmental stage-specific manners. The transcript level of the C1C-Prx gene was abundant at the seed stage, but rapidly decreased after imbibitions. In contrast, the C2C-Prx transcript was not detected in the seeds, but its expression level increased at germination and was maintained thereafter. The C-PrxII transcript level was mild at the seed stage, rapidly increased for 10 days after imbibitions, and gradually disappeared thereafter. In the localization analysis using GFP-fusion proteins, the three isotypes showed different cellular distributions. C1C-Prx was localized in the cytosol and nucleus, whereas C2C-Prx and C-Prx were found mainly in the chloroplast and cytosol, respectively. In vitro thiol-dependent antioxidant assays revealed that the relative peroxidase activities of the isotypes were CPrxII > C2C-Prx > C1C-Prx. C1C-Prx and C2C-Prx, but not C-PrxII, prevented aggregation of malate dehydrogenase as a molecular chaperone. Taken together, these results suggest that the three isotypes of Prx play specific roles in the cells in timely and spatially different manners, but they also cooperate with each other to protect the plant.


Asunto(s)
Brassica/enzimología , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Brassica/genética , Brassica/metabolismo , Isoenzimas , Chaperonas Moleculares , Datos de Secuencia Molecular
15.
J Biol Chem ; 286(49): 42670-42678, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21926169

RESUMEN

A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.


Asunto(s)
Arabidopsis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Baculoviridae/genética , Secuencia de Bases , Caspasa 3/metabolismo , Muerte Celular , Supervivencia Celular , ADN/genética , Fumonisinas/química , Células HeLa , Humanos , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
16.
Plant Sci ; 181(2): 119-24, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21683876

RESUMEN

Peroxiredoxins are antioxidative enzymes that catalyze the reduction of alkyl hydroperoxides to alcohols and hydrogen peroxide to water. 1-Cys peroxiredoxins (1-Cys Prxs) perform important roles during late seed development in plants. To characterize their biochemical functions in plants, a 1Cys-Prx gene was cloned from a Chinese cabbage cDNA library and designated as "C1C-Prx". Glutamine synthetase (GS) protection and hydrogen peroxide reduction assays indicated that C1C-Prx was functionally active as a peroxidase. Also C1C-Prx prevented the thermal- or chemical-induced aggregation of malate dehydrogenase and insulin. Hydrogen peroxide treatment changed the mobility of C1C-Prx on a two-dimensional gel, which implies overoxidation of the conserved Cys residue. Furthermore, after overoxidation, the chaperone activity of C1C-Prx increased approximately two-fold, but its peroxidase activity decreased to the basal level of the reaction mixture without enzyme. However, according to the structural analysis using far-UV circular dichroism spectra, intrinsic tryptophan fluorescence spectra, and native-PAGE, overoxidation did not lead to a conformational change in C1C-Prx. Therefore, our results suggest that 1-Cys Prxs function not only to relieve mild oxidative stresses but also as molecular chaperones under severe conditions during seed germination and plant development, and that overoxidation controls the switch in function of 1-Cys-Prxs from peroxidases to molecular chaperones.


Asunto(s)
Brassica/metabolismo , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Semillas/fisiología , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Brassica/enzimología , Brassica/genética , Cisteína/química , Flores/enzimología , Flores/genética , Flores/metabolismo , Dosificación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Peróxido de Hidrógeno/química , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Estrés Oxidativo , Peroxirredoxinas/química , Peroxirredoxinas/genética , Latencia en las Plantas/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Unión Proteica , Proteínas Recombinantes , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA