Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 783: 146952, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33866176

RESUMEN

The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.

2.
J Hazard Mater ; 300: 538-545, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26253233

RESUMEN

Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

3.
Sci Total Environ ; 466-467: 681-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23959219

RESUMEN

In this study we evaluated the effect of the long term organic management of a vineyard-soil on the biogeochemistry of copper at the micro-aggregate scale. The model vineyard-soil (Mâcon-France) experienced a long-term field-experiment that consisted in amendments and vegetations with various materials and plants. We studied specifically the effect of Straw (S) and Conifer Compost (CC) organic amendments and Clover (Cl) and Fescue (F) vegetation on the fate of copper (fungicide) in the surface layer of this loamy soil, through a comparison with the Non Amended soil (NA). After collection the five soils were immediately physically fractionated in order to obtain 5 granulometric size-fractions. All soils and size-fractions were quantitatively characterized in terms of granulometry, chemical content and copper distribution, speciation and bioavailability to bacteria and plants. The results showed strong increases of soil-constituents aggregation for all treatments (Cl>CC>S>F>NA), in relation with the increased cementation of soil-constituents by organic matter (OM). The distribution patterns of all major elements and organic carbon were found highly variable within the soil sub-fractions and also between the 5 treatments. Due to their specific inorganic and organic composition, soil sub-fractions can thus be considered as a specific microbial habitat. Added OM accumulated preferentially in the 20-2 µm and in the >250 µm of the 5 soils. The distribution patterns of copper as well as its speciation and bioavailability to bacteria in the soil sub-fractions were shown to be strongly different among the five soils, in relation with OM distribution. Our results also suggest that Cu-bioavailability to plants is controlled by soil-rhizosphere structure. Altogether our results permitted to show that long-term organic management of a vineyard soil induced stable modifications of soil physical and chemical properties at both macro and micro-scales. These modifications affected in turn the micro-scale biogeochemistry of copper, and especially its bioavailability to bacteria and plants.


Asunto(s)
Bacterias/metabolismo , Cobre/farmacocinética , Fungicidas Industriales/farmacocinética , Agricultura Orgánica/métodos , Plantas/metabolismo , Microbiología del Suelo , Disponibilidad Biológica , Cobre/química , Cobre/metabolismo , Francia , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Estaciones del Año , Suelo/química , Espectrofotometría Atómica
4.
Environ Sci Process Impacts ; 15(2): 347-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25208699

RESUMEN

The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 µm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 µm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic processes, evolving from a matrix-dominant transfer of water and bacteria to a macropore-dominant transfer. This work points out the importance of using undisturbed natural soils to evaluate the mobility of bacteria in the field, since the evolving hydrodynamic properties of soils appeared to dominate most physicochemical factors.


Asunto(s)
Escherichia coli/fisiología , Microbiología del Suelo , Francia , Modelos Teóricos , Porosidad , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA