Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(35): 15766-15778, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163648

RESUMEN

We explored the speciation and kinetics of the Pu(VI)-citrate and Pu(III)-citrate systems (pHm = 2.5-11.0, I = 0.1 M NaCl, T = 23 °C, O2(g) < 2 ppm) using ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometry, solvent extraction, and PHREEQC modeling. Formation constants were determined for PuO2(HcitH)(aq) (log K°1,1 = 1.09 ± 0.05) and PuO2(HcitH)(citH)3- (log K°1,2 = -0.20 ± 0.07), and evidence for (PuO2)m(citH-k)n(OH)x2m(3+k)n-x was identified under alkaline conditions. Pu(VI) species were found to be less stable in the presence of citrate than in the absence of citrate (t ≤ 168 days); the rate of reduction increased with increasing pH. The direct reduction of Pu(VI) to Pu(IV) was required to fit experimental data in the presence of citrate but did not improve the fit for Pu in the absence of citrate. We also observed increased Pu(III) stability in the presence of citrate (t ≤ 293 days), with higher concentrations of Pu(III) favored at lower pH. Finally, we provide evidence of a radiolysis-driven mechanism for the citrate-mediated reduction of plutonium that involves electron transfer from the oxidative breakdown of citrate. Our work highlights the need to investigate the redox effect of organic ligands on plutonium oxidation states under repository-relevant conditions.


Asunto(s)
Ácido Cítrico , Oxidación-Reducción , Plutonio , Plutonio/química , Ácido Cítrico/química , Cinética , Concentración de Iones de Hidrógeno
2.
Microorganisms ; 11(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37374872

RESUMEN

Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4-5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology.

3.
Chemosphere ; 280: 130680, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34162079

RESUMEN

Spores of a Bacillus sp., isolated from radioactive waste, were tested for their ability to influence the fate and transport of neodymium (Nd3+) under high salt conditions expected at the Waste Isolation Pilot Plant (WIPP) nuclear waste repository. Spores were suspended in neodymium-spiked saline solutions up to 4 M NaCl, and concentrations of Nd and the complexing agent dipicolinic acid (DPA), a component of spores, were monitored along with optical densities and spore numbers. Results support neodymium bioassociation that is dependent upon biomass, with more apparent adsorption occurring at higher spore concentrations. However, probable spore lysis in 2 and 4 M NaCl solutions and possible germination at 0.15 M NaCl appear to drive the release of DPA and subsequent return of Nd to solution. The implications of this work for the WIPP will depend on actual biomass levels and the ionic strength of the repository brines.


Asunto(s)
Bacillus , Bacillus subtilis , Biomasa , Ácidos Picolínicos , Radioisótopos , Cloruro de Sodio , Esporas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA