Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein J ; 43(1): 12-23, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932619

RESUMEN

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family - GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug's action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.


Asunto(s)
Aminoglicósidos , Mycobacterium tuberculosis , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Aminoglicósidos/farmacología , Quercetina/farmacología , Quercetina/metabolismo , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Kanamicina/farmacología , Kanamicina/química , Kanamicina/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/química , Inhibidores Enzimáticos/química
2.
Curr Drug Res Rev ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37125653

RESUMEN

BACKGROUND: Mucormycosis has been infesting the universe for a while back, often with no prompt treatments. The disease devastation is spreading at an alarming rate. Many researchers are still hoping for a good potential drug that could help the healthcare system in this tussle. Molecular docking is an in silico tool that has gained popularity over the last few decades. Knowing the mechanism of enzymatic action is aided by imitating membrane protein actions in binding ligands. AIM: The aim of this perspective is to determine whether an existing drug, daclatasvir, has antifungal activity. OBJECTIVE: The primary objective of this in silico study was to investigate the potential effects of the binding affinity of daclatasvir with the crucial protein (1XFF) of mucormycosis, as well as the binding pattern of the active site amino acids with the drug molecule. MATERIALS AND METHODS: To calculate the binding affinity of daclatasvir to the fungal protein 1XFF, Auto Dock Vina was used for molecular docking studies. The CDOCKER protocol was used to determine the receptor-ligand interaction by configuring various parameters. RESULTS: The docking energy of the ligand (daclatasvir) on the protein (1XFF) was found to be -16.7216 kcal/mol, while the interaction energy was found to be - 42.1314 kcal/mol. CONCLUSION: The binding pattern completely alters the dynamics of the protein, resulting in the breakdown of the fungal wall. The vital protein (1XFF) of Rhizopus oryzae is proposed as a possible protein target for the non-structural protein 5A inhibitor/antiviral drug daclatasvir in this study.

3.
Appl Biochem Biotechnol ; 195(12): 7176-7196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36988845

RESUMEN

In Southeast Asia, the penaeid shrimp aquaculture production faces a new pandemic bacterial disease called acute hepatopancreatic necrosis disease (AHPND). The highly profitable pacific white shrimp, Litopenaeus vannamei, has become a challenging species due to severe lethal infections. Recent research has identified a critical pathogen, Vibrio parahaemolyticus, which caused significant loss in the shrimp industry. The disease pathway involves a virulence plasmid encoding binary protein toxins (PirA/B) that cause cell death. The protein toxins were inherited and conjugatively transferred to other Vibrio species through a post-segregational killing system. In this study, "in silico" (Glide, 2021) analysis identified four phytocompounds as myricetin (Myr), ( +)-taxifolin (TF), (-)-epigallocatechin gallate (EGCG), and strychnine (STN) which could be most effective against both the toxins concerning its docking score and affinity. The interactions of complexes and the critical amino acids involved in docking were analyzed using the Discovery Studio (version 2016). Molecular dynamic studies showed lower root mean square deviations (RMSD) and improved stabilization of ( +)-taxifolin (TF) and (-)-epigallocatechin-3-gallate (EGCG) against both the protein toxins. The antibacterial potential of all four selected compounds had tested against pathogenic strains of V. parahaemolyticus through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The best MBC results were observed at concentrations of 1 mg/mL for EGCG and 1.25 mg/mL for TF. Moreover, the complete reduction of viable cell counts in the in vitro bactericidal activity had recorded after 24 h of incubation.


Asunto(s)
Artemia , Toxinas Bacterianas , Fitoquímicos , Vibrio parahaemolyticus , Animales , Acuicultura , Artemia/microbiología , Toxinas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Catequina/química , Hepatopáncreas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quercetina/química , Vibrio parahaemolyticus/fisiología , Fitoquímicos/química , Fitoquímicos/farmacología
4.
Recent Adv Antiinfect Drug Discov ; 18(3): 170-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803758

RESUMEN

BACKGROUND: Since leprosy bacilli cannot grow in vitro, testing for antimicrobial resistance against Mycobacterium leprae or assessing the anti-leprosy activity of new drugs remains hard. Furthermore, developing a new leprosy drug through the traditional drug development process is not economically captivating for pharmaceutical companies. As a result, repurposing existing drugs/approved medications or their derivatives to test their anti-leprotic potency is a promising alternative. It is an accelerated method to uncover different medicinal and therapeutic properties in approved drug molecules. AIMS: The study aims to explore the binding potential of anti-viral drugs such as Tenofovir, Emtricitabine, and Lamivudine (TEL) against Mycobacterium leprae using molecular docking. METHODS: The current study evaluated and confirmed the possibility of repurposing antiviral drugs such as TEL (Tenofovir, Emtricitabine, and Lamivudine) by transferring the graphical window of the BIOVIA DS2017 with the Crystal Structure of a phosphoglycerate mutase gpm1 from Mycobacterium leprae (PDB ID: 4EO9). Utilizing the smart minimizer algorithm, the protein's energy was reduced in order to achieve a stable local minima conformation. RESULTS: The protein and molecule energy minimization protocol generated stable configuration energy molecules. The protein 4EO9 energy was reduced from 14264.5 kcal/mol to -17588.1 kcal/mol. CONCLUSION: The CHARMm algorithm-based CDOCKER run docked all three molecules (TEL) inside the 4EO9 protein binding pocket (Mycobacterium leprae). The interaction analysis revealed that tenofovir had a better binding molecule with a score of - 37.7297 kcal/mol than the other molecules.


Asunto(s)
Fármacos Anti-VIH , Lepra , Humanos , Tenofovir/farmacología , Lamivudine/farmacología , Emtricitabina/farmacología , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Fármacos Anti-VIH/farmacología , Quimioterapia Combinada , Lepra/tratamiento farmacológico , Mycobacterium leprae
5.
Sci Total Environ ; 836: 155445, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35490806

RESUMEN

Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Animales , Antineoplásicos/química , Organismos Acuáticos/metabolismo , Productos Biológicos/química , Descubrimiento de Drogas , Ecosistema
6.
Appl Biochem Biotechnol ; 194(1): 354-367, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34843077

RESUMEN

Gastric cancer is a pathological condition induced by the bacteria Helicobacter pylori. Targeting the key virulence factors of H. pylori causing gastric cancer is a promising method for treating gastric cancer. Recently, research has been focused on analyzing the adrenergic, cholinergic, and anti-cancer properties of their venom proteins. Testing the anti-cancer activity of the lethal proteins in the venom of P. volitans provides a bioactive compound for cancer treatment. Still, it is also helpful to eliminate the ecological imbalance caused by these fish in the marine environment. This study focuses on an in silico approach using Z-dock to analyze the bioactive prospective of the venom proteins of P. volitans against the essential virulence proteins of H. pylori responsible for inducing cancer. Our in silico docking study using a computational model of the venom proteins and H. pylori proteins has displayed the possible interactions between these proteins. The results revealed that P. volitans hyaluronidase and PV toxin's venom proteins effectively interact with H. pylori proteins Cag A, Cag L, GGT, Cag D, and urease that may be promising proteins in cancer therapy.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Peces/química , Venenos de los Peces/química , Helicobacter pylori/química , Simulación del Acoplamiento Molecular , Perciformes , Factores de Virulencia/química , Animales , Humanos , Neoplasias Gástricas
8.
Mol Biotechnol ; 63(10): 898-908, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34159564

RESUMEN

New pandemic infection of coronaviridae family virus spread to more than 210 countries with total infection of 1,136,851 and 62,955 (4.6%) deaths until 5th April 2020. Which stopped the regular cycle of humankind but the nature is consistently running. There is no micro molecule remedy found yet to restore the regular life of people. Hence, we decided to work on natural biophores against the COVID proteins. As a first step, major phytoconstituents of antiviral herbs like Leucas aspera, Morinda citrifolia, Azadirachta indica, Curcuma longa, Piper nigrum, Ocimum tenuiflorum, and Corallium rubrum collected and performed the lock and key analysis with major spike protein of COVID-19 to find the best fitting lead biophore using computational drug design platform. The results of protocol run showed, phytoconstituents of Morinda citrifolia and Leucas aspera were found lower binding energy range of - 55.18 to - 25.34 kcal/mol, respectively and compared with Hydroxychloroquine (HCQ) (- 24.29 kcal/mol) and Remdesivir (- 25.38 kcal/mol). The results conclude that, core skeletons chromen, anthracene 9, 11 dione and long-chain alkyl acids/ester-containing biophores showen high stable antagonistic affinity with S-protein. Which leads the breakdown of spike protein and ACE2 receptor complex formation and host mechanism of corono virus. In addition, the dynamic trajectory analysis confirmed the complete denaturation of spike protein by the molecule 4-(24-hydroxy-1-oxo-5-n-propyltetracosanyl)-phenol from Leucas aspera and stability of spike-ligand complex. These biophores will aid the researcher to fabricate new promising analogue and being recommended to assess its COVID-19 treatment.


Asunto(s)
Antivirales/química , Fitoquímicos/química , Glicoproteína de la Espiga del Coronavirus/química , Antivirales/farmacología , COVID-19/virología , Dominio Catalítico , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Plantas Medicinales/química , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA