Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Phys Rev Lett ; 113(18): 185302, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25396377

RESUMEN

We compute the finite-temperature phase diagram of a pseudospin-1/2 Bose gas with contact interactions, using two complementary methods: the random-phase approximation and self-consistent Hartree-Fock theory. We show that the spin-dependent interactions, which break the (pseudo-) spin-rotational symmetry of the Hamiltonian, generally lead to the appearance of a magnetically ordered phase at temperatures above the superfluid transition. In three dimensions, we predict a normal easy-axis (easy-plane) ferromagnet for sufficiently strong repulsive (attractive) interspecies interactions, respectively. The normal easy-axis ferromagnet is the bosonic analog of Stoner ferromagnetism known in electronic systems. For the case of interspecies attraction, we also discuss the possibility of a bosonic analog of the Cooper-paired phase. This state is shown to significantly lose in energy to the transverse ferromagnet in three dimensions, but is more energetically competitive in lower dimensions. Extending our calculations to a spin-orbit-coupled Bose gas with equal Rashba and Dresselhaus-type couplings (as recently realized in experiment), we investigate the possibility of stripe ordering in the normal phase. Within our approximations, however, we do not find an instability towards stripe formation, suggesting that the stripe order melts below the condensation temperature, which is consistent with the experimental observations of Ji et al. [Ji et al., Nat. Phys. 10, 314 (2014)].

3.
Nat Commun ; 5: 5174, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25300774

RESUMEN

Recent experiments on ultracold atoms in optical lattices have synthesized a variety of tunable bands with degenerate double-well structures in momentum space. Such degeneracies in the single-particle spectrum strongly enhance quantum fluctuations, and often lead to exotic many-body ground states. Here we consider weakly interacting spinor Bose gases in such bands, and discover a universal quantum 'order by disorder' phenomenon which selects a novel superfluid with chiral spin order displaying remarkable properties such as spontaneous spin Hall effect and momentum space antiferromagnetism. For bosons in the excited Dirac band of a hexagonal lattice, such a state supports staggered spin loop currents in real space. We show that Bloch oscillations provide a powerful dynamical route to quantum state preparation of such a chiral spin superfluid. Our predictions can be readily tested in spin-resolved time-of-flight experiments.

4.
Phys Rev Lett ; 113(9): 095702, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25215993

RESUMEN

We study the dynamics of domain formation and coarsening in a binary Bose-Einstein condensate that is quenched across a miscible-immiscible phase transition. The late-time evolution of the system is universal and governed by scaling laws for the correlation functions. We numerically determine the scaling forms and extract the critical exponents that describe the growth rate of domain size and autocorrelations. Our data are consistent with inviscid hydrodynamic domain growth, which is governed by a universal dynamical critical exponent of 1/z=0.68(2). In addition, we analyze the effect of domain wall configurations which introduce a nonanalytic term in the short-distance structure of the pair correlation function, leading to a high-momentum "Porod" tail in the static structure factor, which can be measured experimentally.

5.
Phys Rev Lett ; 112(9): 095302, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24655264

RESUMEN

We consider the time evolution of the magnetization in a Rashba spin-orbit coupled Fermi gas, starting from a fully polarized initial state. We model the dynamics using a Boltzmann equation, which we solve in the Hartree-Fock approximation. The resulting nonlinear system of equations gives rise to three distinct dynamical regimes with qualitatively different asymptotic behaviors of the magnetization at long times. The distinct regimes and the transitions between them are controlled by the ratio of interaction and spin-orbit coupling strength λ: for small λ, the magnetization decays to zero. For intermediate λ, it displays undamped oscillations about zero, and for large λ, a partially magnetized state is dynamically stabilized. The dynamics we find is a spin analog of interaction induced self-trapping in double-well Bose Einstein condensates. The predicted phenomena can be realized in trapped Fermi gases with synthetic spin-orbit interactions.

6.
Phys Rev Lett ; 106(12): 125301, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517320

RESUMEN

We study the time scales for adiabaticity of trapped cold bosons subject to a time-varying lattice potential using a dynamic Gutzwiller mean-field theory. We explain apparently contradictory experimental observations by demonstrating a clear separation of time scales for local dynamics (~ ms) and global mass redistribution (~1 s). We provide a simple explanation for the short and fast time scales, finding that while density or energy transport is dominated by low energy phonons, particle-hole excitations set the adiabaticity time for fast ramps. We show how mass transport shuts off within Mott-insulator domains, leading to a chemical potential gradient that fails to equilibrate on experimental time scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA