Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238850

RESUMEN

The aim of this study was to investigate the gelation process of binary mixes of pumpkin-seed and egg-white proteins. The substitution of pumpkin-seed proteins with egg-white proteins improved the rheological properties of the obtained gels, i.e., a higher storage modulus, lower tangent delta, and larger ultrasound viscosity and hardness. Gels with a larger egg-white protein content were more elastic and more resistant to breaking structure. A higher concentration of pumpkin-seed protein changed the gel microstructure to a rougher and more particulate one. The microstructure was less homogenous, with a tendency to break at the pumpkin/egg-white protein gel interface. The decrease in the intensity of the amide II band with an increase in the pumpkin-seed protein concentration showed that the secondary structure of this protein evolved more toward a linear amino acid chain compared with the egg-white protein, which could have an impact on the microstructure. The supplementation of pumpkin-seed proteins with egg-white proteins caused a decrease in water activity from 0.985 to 0.928, which had important implications for the microbiological stability of the obtained gels. Strong correlations were found between the water activity and rheological properties of the gels; an improvement of their rheological properties resulted in a decrease in water activity. The supplementation of pumpkin-seed proteins with egg-white proteins resulted in more homogenous gels with a stronger microstructure and better water binding.

2.
Foods ; 12(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048368

RESUMEN

This study reports the possibility of obtaining sugar-free WPI-based macarons with erythritol addition. The whey protein isolate (WPI) solution (20%, w/v) was whipped, and erythritol was added to the foam at concentrations of 20, 40, and 60 g, with 125 g of almond flour. The rheological properties (τ, G', G″, and tan (δ)) and stability of the macaron batters before baking were evaluated. In order to produce the macarons, the batters were solidified at 147 °C for 12 min. The textural and surface properties (roughness and color), as well as the microstructures and water activities, were determined for the macarons. It was feasible to produce macarons over the entire range of the tested erythritol content. Even the smallest amount of erythritol (20 g) facilitated the preservation of the macaron structure. The medium erythritol concentration (40 g) improved the stability of the batters and their rheology and was the most effective for air pocket stabilization during baking; however, its largest addition (60 g) resulted in an increase in the final macaron volume. The increased erythritol addition improved mechanical properties and shelf life, producing a smoothing effect on the macaron surfaces and having a significant effect on their color co-ordinates.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35409605

RESUMEN

The main objective of this study was to investigate the possibility of using a combination of vegetable proteins from soybean (SOY), rice (RPC), and pea (PEA) with liquid syrups: tapioca fiber (TF), oligofructose (OF), and maltitol (ML) in the application of high-protein bars to determine the ability of these ingredients to modify the textural, physicochemical, nutritional, surface properties, microstructure, sensory parameters, and technological suitability. Ten variants of the samples were made, including the control sample made of whey protein concentrate (WPC) in combination with glucose syrup (GS). All combinations used had a positive effect on the hardness reduction of the bars after the storage period. Microstructure and the contact angle showed a large influence on the proteins and syrups used on the features of the manufactured products, primarily on the increased hydrophobicity of the surface of samples made of RPC + ML, SOY + OF, and RPC + TF. The combination of proteins and syrups used significantly reduced the sugar content of the product. Water activity (<0.7), dynamic viscosity (<27 mPas∙g/cm3), and sensory analysis (the highest final ratings) showed that bars made of RPC + OF, SOY + OF, and SOY + ML are characterized by a high potential for use in this type of products.


Asunto(s)
Fibras de la Dieta , Grano Comestible , Grano Comestible/química , Dureza , Humanos , Agua/análisis , Proteína de Suero de Leche
4.
Foods ; 11(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35159522

RESUMEN

Cheese has been listed as one of four priority food groups intended for salt reduction reformulation. The present study aimed to investigate the possibility of producing Serbian white brined cheese (Homoljski Sir) with half of NaCl, three quarters of NaCl and all NaCl replaced with KCl (Na50, Na25 and Na0, respectively). Basic composition, proteolysis and texture profile parameters were monitored during 60 days of ripening. At the end of ripening, an acceptance test was conducted by untrained consumers (N = 46). According to the cluster analysis based on hedonic scores, three clusters emerged: male consumers (47.8%), agreeable consumers (30.4%) and highly educated female consumers (21.8%). Both partial and a total salt replacement had no effect on the course of proteolytical changes, the texture and basic composition during ripening. Female consumers did not accept any level of salt substitution, while male consumers showed dislike only for the Na0 cheese. Almost 80% of all consumers liked moderately-to-very-much the Na25 cheese variant. It implies that it is worth considering the production of cheese with 50-75% of NaCl replaced with KCl. The addition of natural flavoring and clear labeling of the sodium reduction should accompany the salt replacement strategy.

5.
J Food Sci Technol ; 57(1): 163-172, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31975719

RESUMEN

Gelatin solution was added to the gluten dispersion to obtain 25% protein from gluten and 0, 0.3, 0.6 and 1.0% of gelatin. Heat-induced gels were formed. The gelatin was leached by immersing the gel straps in distilled water at 45 °C for 2 h. Incorporation of gelatin into the gluten gel matrix resulted in its strengthening. Increase in elastic properties with the increasing amount of gelatin was also found for the macerated gels. The tangent delta showed the minimum for the leached gel with the initial concentration of gelatin 0.6%, so probably at this concentration there was some reinforcement of gluten, or the structure of gluten matrix was formed with the best ability to include gelatin inside. FTIR (Fourier transform infrared spectroscopy) results showed, that at the 0.6% gelatin concentration more gelatin was present in the leached samples than in the 1% gelatin added samples. Gelatin gels can act as an active filler reinforcing the gluten microstructure. Leaching of gelatin from the mixed gel matrix resulted in the microstructure with visible phase separation. Generally gelatin addition gave a surface smoothing effect and lower surface roughness of the obtained gels. Pure gluten gels soaking in hot water resulted in the decreased roughness. Possibility of manipulation with gluten gels surface roughness by co-gelling with gelatin can have an influence on the application of such gels as matrices for active ingredients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA