Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543359

RESUMEN

The objective of the study was to analyze the influence of coating treatments on sound propagation speeds in thin boards, along the longitudinal and radial directions of resonance wood. The samples studied were thin boards made of spruce and maple wood with dimensions of 240 mm × 80 mm × 4 mm (length × width × thickness) subjected to different coating treatments (oil-based varnish and alcohol varnish) as well as unvarnished samples, exposed to radiation UV, and specimens treated in the saline fog. The test method consisted of evaluating the propagation speeds of Lamb waves applied to thin plates, according to a semicircular test model, so that the results highlighted both the acoustic response in the longitudinal and radial directions as well as the variation in the anisotropy of the samples with the change in the sound propagation direction relative to wood fibers. Based on the statistical analysis, sound propagation speed profiles were obtained in each of the 38 directions analyzed for all wood samples. The results highlighted that the oil-based varnish led to a decrease in the speed of propagation in the radial direction, compared to the alcoholic varnish, whose major effect was in the longitudinal direction, on the spruce wood. On maple wood, increasing the number of varnish layers, regardless of the type of varnish, led to a decrease in the anisotropy ratio between the longitudinal and radial directions.

2.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139900

RESUMEN

Cellulose-based foams present a high potential for noise insulation applications. These materials are bio-degradable, eco-friendly by both embedded components and manufacturing process, have low density and high porosity, and are able to provide good noise insulation characteristics compared with available petroleum-based foams currently used on a large scale. This paper presents the results of some investigations performed by the authors in order to improve the functional characteristics in terms of free surface wettability and structural integrity. Native xylan and xylan-based derivatives (in terms of acetylated and hydrophobized xylan) were taken into account for surface treatment of cellulose foams, suggesting that hemicelluloses represent by-products of pulp and paper industry, and xylan polysaccharides are the most abundant hemicelluloses type. The investigations were mainly conducted in order to evaluate the level to which surface treatments have affected the noise insulation properties of basic cellulose foams. The results indicate that surface treatments with xylan derivatives have slowly affected the soundproofing characteristics of foams, but these clearly have to be taken into account because of their high decrease in wettability level and improving structural integrity.

3.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765650

RESUMEN

This paper examines effective and environmentally friendly materials intended for noise insulation and soundproofing applications, starting with materials that have gained significant attention within last years. Foam-formed materials based on cellulose fibers have emerged as a promising solution. The aim of this study was to obtain a set of foam-formed, porous, lightweight materials based on cellulose fibers from a resinous slurry pulp source, and to investigate the impact of surfactant percentage of the foam mixtures on their noise insulation characterisitcs. The basic foam-forming technique was used for sample assembly, with three percentages of sodium dodecyl sulphate (as anionic surfactant) related to fiber weight, and a standardised sound transmission loss tube procedure was used to evaluate noise insulation performance. Results were obtained as observations of internal structural configurations and material characteristics, and as measurements of sound absorption/reflection, sound transmission loss, and surface acoustic impedance. Based on the findings within this study, the conclusions highlight the strong potential of these cellulosic foams to replace widely used synthetic materials, at least into the area of practical noise insulation applications.

4.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687689

RESUMEN

The purpose of the study was to analyze the influence of the quality class and the orthotropy of wood upon the sound absorption coefficient, the reflection and the impedance ratio of two species widely used for stringed musical instruments, namely spruce (Picea abies L. Karst) and maple (Acer pseudoplatanus L.). An impedance tube for the frequency range 100-6400 Hz was used in these experimental determinations. Knowing the influence of porosity and tortuosity on the acoustic absorption, these properties were also determined, as well as the sound reduction coefficient and the maximum values of the acoustic absorption coefficients in relation to frequency. The main results highlighted the differences between the anatomical quality class of the wood within each species, but also concerning the sound direction relative to the three main sections of wood, as an orthotropic material. The article highlights the acoustic performance parameters related to the frequency of the wooden material and its relationship to density, porosity and quality class. The results represent useful information for musical instruments manufacturers and more.

5.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177236

RESUMEN

Based on the environmental concerns, the utilisation of hemicelluloses in food packaging has become a sustainable alternative to synthetic polymers and an important method for the efficient utilisation of biomass resources. After cellulose, hemicellulose is a second component of agricultural and forestry biomass that is being taken advantage of given its abundant source, biodegradability, nontoxicity and good biocompatibility. However, due to its special molecular structure and physical and chemical characteristics, the mechanical and barrier properties of hemicellulose films and coatings are not sufficient for food packaging applications and modification for performance enhancement is needed. Even though there are many studies on improving the hydrophobic properties of hemicelluloses, most do not meet environmental requirements and the chemical modification of these biopolymers is still a challenge. The present review examines emerging and green alternatives to acetylation for xylan hemicellulose in order to improve its performance, especially when it is used as biopolymer in paper coatings or films for food packaging. Ionic liquids (ILs) and enzymatic modification are environmentally friendly methods used to obtain xylan derivatives with improved thermal and mechanical properties as well as hydrophobic performances that are very important for food packaging materials. Once these novel and green methodologies of hemicellulose modifications become well understood and with validated results, their production on an industrial scale could be implemented. This paper will extend the area of hemicellulose applications and lead to the implementation of a sustainable alternative to petroleum-based products that will decrease the environmental impact of packaging materials.

6.
Polymers (Basel) ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631844

RESUMEN

Wet foam can be used as a carrier in the manufacturing of lightweight materials based on natural and man-made fibers and specific additives. Using a foam forming method and cellulose fibers, it is possible to produce the porous materials with large area of end-using such as protective and cushioning packaging, filtering, hydroponic, thermal and sound absorption insulation, or other building materials. In comparison with the water-forming used for conventional paper products, foam-forming method provides many advantages. In particular, since fibers inside the foam are mostly trapped between the foam bubbles, the formed materials have an excellent homogeneity. This allows for using long fibers and a high consistency in head box without significant fiber flocking. As result, important savings in water and energy consumptions for dewatering and drying of the foam formed materials are obtained. In cushioning packaging, foam-formed cellulose materials have their specific advantages comparing to other biodegradable packaging (corrugated board, molded pulp) and can be a sustainable alternative to existing synthetic foams (i.e., expanded polystyrene or polyurethane foams). This review discusses the technical parameters to be controlled during foam forming of cellulose materials to ensure their performances as cushioning and protective packaging. The focus was on the identification of practical solutions to compensate the strength decreasing caused by reduced density and low resistance to water of foam formed cellulose materials.

7.
Polymers (Basel) ; 14(7)2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406344

RESUMEN

The structure of wind turbine blades (WTBs) is characterized by complex geometry and materials that must resist various loading over a long period. Because of the components' exposure to highly aggressive environmental conditions, the blade material suffers cracks, delamination, or even ruptures. The prediction of the damage effects on the mechanical behavior of WTBs, using finite element analysis, is very useful for design optimization, manufacturing processes, and for monitoring the health integrity of WTBs. This paper focuses on the sensitivity analysis of the effects of the delamination degree of fiberglass-reinforced polymer composites in the structure of wind turbine blades. Using finite element analysis, the composite was modeled as a laminated structure with five plies (0/45/90/45/0) and investigated regarding the stress states around the damaged areas. Thus, the normal and shear stresses corresponding to each element of delaminated areas were extracted from each ply of the composites. It was observed that the maximum values of normal and shear stresses occurred in relation to the orientation of the composite layer. Tensile stresses were developed along the WTB with maximum values in the upper and lower plies (Ply 1 and Ply 5), while the maximum tensile stresses were reached in the perpendicular direction (on the thickness of the composite), in the median area of the thickness, compared to the outer layers where compression stresses were obtained. Taking into account the delamination cases, there was a sinuous-type fluctuation of the shear stress distribution in relation to the thickness of the composite and the orientation of the layer.

8.
Materials (Basel) ; 13(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759807

RESUMEN

This paper deals with the area of structural damage monitoring of steel strands wire ropes embedded into various equipment and mechanical systems. Of the currently available techniques and methods for wire ropes health monitoring, the authors focused on the group of techniques based on operational dynamics investigation of such systems. Beyond the capability and efficiency of both occasionally and continuously monitoring application, the dynamics-based methods are able to provide additional information regarding the structural integrity and functional operability of the entire ensemble embedding the wire ropes. This paper presents the results gained by the authors using a laboratory setup that can simulate the operational condition usually used for regular applications of wire ropes. The investigations were conducted on three directions of acquired signals post-processing. Firstly, the classical fast Fourier transform was used to evaluate the potential changes within the spectral distribution of transitory response. The other two directions involved high-order spectral analyses in terms of bi-spectrum and Wigner-Ville distribution and multi-scale analysis based methods such as complex wavelet cross-correlation and complex wavelet coherency. The results indicate that each direction of analysis can provide suitable information regarding potential wire rope damage, but the ensemble of post-processing methods offers supplementary precision.

9.
Polymers (Basel) ; 11(7)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340427

RESUMEN

Recent studies have highlighted an innovative way to produce highly porous materials based on cellulose fibers. These studies have focused on the foam-forming process, where the cellulose fibers and other components are mixed with foam. In the authors' previous research, the foam-formed cellulose materials (FCM) were obtained by mixing a surfactant with cellulose fibers, taken from virgin pulp and recovered papers. In the present paper, the authors performed additional experimental and computational analyses in order to evaluate the sound insulation capabilities of these FCM beyond the initial impedance of tube investigations. The poroacoustics computational methodology parameters-i.e., airflow resistivity, porosity, tortuosity, viscous, and thermal characteristic lengths-were herein evaluated. This analysis was performed using both a theoretical/empirical approach from the specialized literature and an experimental investigation developed by the authors. The computational investigations were conducted in two stages: First, we evaluated the approximation of the experimentally gained normal incidence parameters, in terms of absorption and reflection, respectively, relative to the estimated ones. The second stage of analysis consists of a parametrical estimation of sound insulation characteristics concerning the incidence angle of sound hitting the porous layer. The results presented in this paper are in agreement with the computational experimental results, providing extended soundproof characteristics to the incidence angle of the acoustic field. Further, this study supplies additional information useful for future analyses regarding the influences of random geometry air inclusions into the FCM layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA